
r

MULTICS TECHNICAL BULLETHJ MT!:3- 419

Date: 16 July 1979

From: Bernard s. Greenberg

To: All concerned parties

Subject: Terminal Features i·le:no

This Multics Technical Bulletin consists of a paper I have
written describing what terminal features are most desirable for
use in real-time editor and managed-video applications. It is
based upon my experiences over the past year and half in
supporting terminals for Multics Emacs, as well as the
experiences of other researchers outside the company with
similar software.

This memo might also serve to some as an introduction to
the features of consumer video terminals; it has been found
valuable in that use by many.

This memo has received wide distribution within the
Company, and substantial distribution within the ARPANET and MIT
communities, and has been distributed to some ter~inal
manufacturers, within and outside the Company.

•.

Unlike nest Multics Technical Bulletins, this me~o is not
limited to the Multics Developraent Community; in fact, it will
do the most good if it is distributed as widely as possible to
those interested in terminal design and support. It may be
reproduced without permission, as long as its title pages and
origin are left intact.

Page 1

Date
From:
Subject:
To:

5/8/79 (vers 5)
Bernie Greenberg (Honeywell, CISL)
Desirable termin~l features for support of Emacs.
All interested parties.

Many times I have been approached and asked about certain
Emacs screen management features, and have responded that the
lack of appropriate terminal features renders the proposal
infeasible. When asked to detail what these features would be, a
long list at once comes to mind, as well as an equally long list
of what is wrong with today's terminals, in specific and in
general. Thus, I have here committed to writing these opinions,
wherein I state what features are most desirable and undesirable
in current offerings, and what features are most needed. This
document results from the cumulative experience of interfacing
dozens of terminals to Multics Emacs, and learning of the
vagaries, peculiarities, and limitations of each. It is hoped
that this document will provide some feedback to those who wish
to design, sell, or purchase video terminals, from the
implementor of a system which attempts to exploit their features.

I am discussing, in this document, character-asynchronous
ASCII character-video terminals. I am not discussing
storage-tube or other graphics-oriented devices, but devices
usually implemented with raster-scan technology. Whether the.
internal organization of the terminal involves bit-map memory or
scanned character-generated vid~o, is not of immediate interest.
If any calligraphic device attempts to provide a dynamic,
character-asynchronous interface, then it, too, falls in the
category under discussion ..

I am not claiming that terminals that lack all of the
features that I consider worthwhile are necessarily bad
terminals, although for many of the things I discuss, this is
precisely the case. I am claiming that these features do
determine suitability for the support of any real-time video
editor. These features and needs are not peculiar to Multics
Emacs: other imple~entors of real-time video editors agree that
these needs are universal. Indeed, these discussions are not
limited to applicability for mainframe-oriented editing; any
conceivable implementation, involving miniconputers, distributed
networks, or multilevel programs in different processors
distributing the work of editing would find these same criteria
to be equally important.

When I use the term "remote host", or "host", in this
discussion, I will be referring to the computer system which
effectively controls the screen of the terminal under
consideration, and receives characters from its keyboard. I do
not specifically mean the "central system" as opposed to the
communications processor, or imply any geographical distance. I
will be referring to what ever system interfaces to that
terminal, or to what I am considering as the terminal. By
"software", I will be referring to those programs running on that
system.

Page 3

The first part of the discussion will consider things that
most termi.nals have, that He use now, and tl1at they should
continue to have.

Support of Full ASCII

Multics, and most other usable time-sharing systems, use the
full ASCII character set, upper and lower case. All documents on
Multics, and most other time-sharing systems, are of intermixed
case. It is unreasonable to expect people to edit documents on
terminals that can only display upper-case. While these _
terminals may be adequate in some batch-oriented situations, or
for editing source programs in some implementations of some
programming languages, they are completely unsuited for use in
interactive time-sharing where document preparation and editing
are to be performed.

Multics Emacs uses the full ASCII character set, including
the ability to transmit all 128 characters from the keyboard.
Most other similar implementations are based on the full ASCII
character set. The presence of a key to transmit the ASCII 11 ESC 11

(escape, 033) character is needed for Multics Emacs. The
presence of a "Control" key is mandatory. The control key is
expected to be on the left-hand side of the keyboard, althou~h
one on each side is optimal. ASCII defines control characters as
being 100 (octal) less than the same character without the
control key. Alphabetic characters depressed with the control """
key depressed are expected to produce 100 less than the
corresponding upper case alphabetic. Thus, 11 Control X" on almost
any ASCII device willtransmit "030" (X = 130, 130 - 100 = 030).
The documentability of the editor relies on being able to state
that "Control so and so does this .. ".

I would not even bring this point up, except that the
Teletype Model 43 does otherwise, re-using Control J and Control
M for less-c6m~on codes because a Control J and a Control M can
always be generated by the Linefeed and Carriage Return keys (on
that or any other ASCII terminal). Thus, the Emacs
documentation, which says that "Control X Control M" is ''Execute
a Multics command" (note the purposeful mnemonic value) does not
work on this terminal. Similarly, a larger number of terminals
place Control Underscore (037) and Control Circumflex (036) in
obscure places, or have no way of generating them at all.

The presence of a "Rubout" key (generating ASCII DEL, 177),
is highly desirable. Rubout, TAB, and other ASCII-defined control
codes should be accessible on keys that do not need to be shifted
to generate these codes; having to 11 shift 11 to use "rubout" is a
common misfeature.

Page 4

·- .. - .~.:. -··

Feature Accessibility From Host

r All terminal screen control functions should be available
from the remote host. This is not to be taken for granted; the
Tektronix 4023 and the HIS (Honeywell) VIP7700 (for two that come
to mind immediately) provide line and character insert and delete
through local keys, but these features may not be invoked fro;n
the host computer.

,.

Local options settable via switches on the terminal should,
optimally, be settable from the host as well; the only way that
software can be sure that the user has set all the terminal
options correctly for a given application is to set thein itself.
A program that needs to type out "Please turn the auto-crlf
switch off and type 'go'" is one operating under stress indeed.

· A video editor must manage the screen entirely and
completely. Every last character and cursor position on the
screen must be placed there or ordered by the host computer;
there is no "local ed i ting 11 or "local function". If the user
appears to be "just typing in text", it is by the grace of the
video editor. This is the basis of the video editor philosophy;
arguments about relevant implementation efficiency or alternative
implementations are not appropriate here.

The terminal must be capable of full-duplex operation, the
keyboard and screen completely dissociated. I have observed the
ADDS Regent 200 terminal, on which holding down a shift key
influences the interpretation of control sequences coming from
the host! "Features" like this go a long way towards making a
terminal completely unusable. The terminal must be capable of
performing screen control operations as directed by the host at
the same time the operator is typing; if, at certain line speeds,
the microcode cannot keep up, loses controls, loses typed
characters, or worse yet, dies, the terminal can be said to be
"·inoperative" at that speed. The Tektronix 4025 and 4027 perform
unpredictably if input is typed while any screen-control
O?eration is in progress. Characters should be transmitted from
the keyboard to the host regardless of what is going on on the
screen.

The terminal should be resilient; if some communications
problem, or even internal microcode problem occurs, the terminal
should not enter a state where it must be powered off, the
connection dropped, etc.· Similarly, if some bad input is
received, or thought to have been received, the terminal should
"carry on". What not to do (for example, a recent ch::ng;e to the
HIS VIP7801) is go-rri"to an error state flashing a light,
requiring the operator to intervene by pressing a special button.

Page 5

Uniformity and Predictability of Function

Terminal control operations should operate in a uniform and
predictable manner. Operations should be valid at any point of
the screen. As a counterexample, the "insert-lines" function on the
Tektronix 4025 and 4027 cannot be used on the top line of the
screen. The ADDS980 has no clear-to-end-of line function, but an
ASCII Carriage return will clear to the end of the current line
and position to the next line. ·Thus, it can be used as a
substitute for clear-to-end-of-line everywhere except on the last
line. Terminal operations that need special treatment depending
upon what the last operation was, or require going into and
out of special modes to perform, are highly undesirable. Operations
that leave the cursor in out of the way places are also to be
frowned upon. Undocumented interactions between commands, not
anticipated as "reasonable" by the terminal designers are another
common pro b1 em.

As a rule of thumb, a terminal has reasonable and
predictable features if an expert can add support of this
terminal to Multics Emacs (or a similar parametrized screen
management formalism, such as n CRTS TY" on the ~nT-AI Lab
PDP-10's) within twenty minutes, with no documentation other than
a list of terminal control sequences. The syndrome of "you can't
use insert-chars if the last ...• was a ... or you just •.• " is an
all too common effect which leads to user and implementor ..,.
dissatisfaction in a short time. '

Cursor Positioning

A terminal must have the ability to have its cursor
positioned to any place on the screen without knowledge of where
it is currently. The host must be able to move the cursor
to any point on the screen. The character sequences directed at the
terminal for this purpose should be as brief as possible; most termina
manage to accomplish this· in four characters. Sorae, like the Delta
Data terminals, need ten characters (which is almost unacceptable).

Most terminals also support shorter sequences to effect
relative cursor ~otion when the cursor position is known. ASCII
BS (backspace, 010) for backwards one character, ASCII CR (Carriage
Return, 015) for moving to the beginning of the current line, and
ASCII LF (Line Feed, 012) for motion down one line in the same
column, are common. Similarly, the ASCII ESCAPE (033) character
followed by A, B, C, and D, for relative directions on the four
points of the compass, are common. Although not strictly
necessary, usage at 300 baud is rendered substantially more
responsive by the existence of these features. Sioilarly,
a single sequence to position the cursor home (The upper
left-hand screen corner) is common and marginally valuable. ""'

The ability to set tab stops and tab to .them is a common and
useful feature. Multics expects tabs every 10 spaces, most other
systems expect tabs every 8. This implies that fixed,
non-settable tabs (as in the DEC VT52) are suboptimal. Tabs
allow more optimal cursor positioning, and more rapid output of
normal (non-Emacs) output. A very common design defect in many
terminals is clearing all tab stops when the screen is cleared.
This makes tabs well-nigh useless on these terminals, for screen
clearing is a much more useful operation than tabbing.

Cursor positioning without need for knowledge of where the
cursor is currently located is also essential to robust terminal
operation: should a cursor be mispositioned due to minor
malfunction, accidental pressing of "local" keys, or other
unpredictable mishaps, successive cursor movement should
"recover" from this error rather than compound on it.

While on the subject of cursors, the point should be made
that blinking cursors are highly preferable to static ones; the
ability of the user to instantly find the cursor is of paramount
importance; cursors that "invert" the character on which they
sit are preferable to those that obliterate it. The latter are
singularly unacceptable when they don't blink, as they totally
obscure the character under under them. The Tektronix terminals
require switching between two modes to access all features; in
one of these modes the cursor is not visible; this is poor.

Ma~s Text Erasure

The ability to erase all of the screen, or from a given
point in a line to the end of a line is crucial. Very few video
terminals lack this feature; among them are the Tektronix
character-oriented terminals, and the Lear-Siegler ADM3.
Without this feature, spaces have to be transmitted at line speed
to .elear out .regions of the screen.foT new displays. At low line
speeds, this is intolerable. Inability to cle<~ the entire screen
at less than 9600 baud rules out a terminal for this use.

Insert/delet~ facilities.

"Insert/delete facilities" refers to two sets of common
features, "Insert/delete lines 11 and 11 Insert/delete characters."
Many popular terminals have both, one or the other, or neither
(although insert/delete lines is more common than insert/delete
characters). "Insert/delete lines" describes the ability to
instruct a terminal to remove entire text lines from any point
on its screen, moving lines below it up, without need for .
retransmitting those lines frora the computer system, or "open up"
blank lines on the screen, pushing lower lines down and so~e off
the screen, without retransmission of the moved lines.
"Insert/delete characters" describes a similar ability to open up
blank space, or alternatively, insert new characters, into the
middle of an existing line on the screen, or remove characters
from the middle of a line, while preserving and moving the
remainder (to the right) of the line.

Page "7

The ability to reorganize lines on the screen by shifting
existant text around en masse is critical to the use of video
terminals via communications lines. Modelling of documents on
screens often involves moving parts of lines on a line (i.e.,
the insert or deleting of characters), or moving lines around
on the screen. The use of terminal controls to effect this motion
relieves the software from having to retransmit an entire screen,
or a large part of a screen. At 300 baud, which is not at all
uncommon, 24 x 80 = 1920 characters takes one minute to transmit,
This is an unacceptable co~sequence of doing something as simple·
as moving the editor's "cursor" to the first line of a document
that is not on the screen.

The ability to scroll is a subset of the ability to insert
and delete lines. Although "scrolling", as normally provided,
allows text to move continuously 11 behind 11 the screen, the inability
to move less than the entire screen or more than one line at a time
precludes all nature of effective screen managment.

Similarly, the ability to insert and delete characters
from the middle of a line is crucial to usability and lack
of frustration at 1200 baud and below. Without this feature,
typing in the middle of a line requires the rest of a line to be
rewritten as each character is entered, which, for a long'
line at 300 baud, could be seconds per character.

Although one might argue that the software could avoid this
by timing the characters as they went out to the terminal and ~
avoiding screen update until they were gone, this is in many
situations impossible. The current Multics Communications System
does not provide facilites for doing this, and many real and
projected networking situations preclude this as well.

Timing and Padding Problems

Terminai micro~rocesso~~ shduld have enbugh computational
resources, -and their programs so coded, that the vast bulk of
screen control operations do not require carefully measured
sequences of "pad" characters to time out the microprogram.
A reasonable terminal in this regard, the HIS VIP7200, requires
one or two pad characters for a total screen clear at 9600 baud.
A poor terminal in this regard, the Delta Data 4000, documents
a whole table of pad requirements at different speeds for different
operations. During the building of support of this device, it was
found that the documented pads were often not enough, some
operations that did not need padding, according to the
documentation, required some, and random and non-anticipatable
padding after and before certain operations had to be
added. To this day, we have padding probleCTs in the support of
the Delta Data 4000. The conclusion see~s to be that if extensive'°"
padding is required, the microprocessor/ffiicrocode combination
is too slow to be used in a bug-free way at the speeds being
supported.

· T~e worst case.of padding requirements is that of the
Haze~tine.2000 terminal which requires an exact amount of
padding; if too much is given, an unrecoverable error situation
results. Given packet and character-oriented transmission
networks, it is often impossible to make any statement about the
time required to output a character sequence at all. In some
network situations, it may be totally impossible to determine the
ultimate user's line speed. The conclusion seems to be that
while small and occasional padding requirements can be dealt
with, extensive or exact padding requirements reduce a terminal's
usability substantially.

* * * * * * * * * * * * * *
Now I will discuss things that most terminals do wrong.

"Function Keys"

Keys that provide local screen-control function occupy
useful keyboard space, make the operation of a terminal more
difficult, and scare naive users. They have no use at all in a
real-tiQe editor environment. On some terminals, these keys
(clear screen, move cursor, etc.) cause these operations to
happen locally no matter what the state of the terminal. This
only serves to confuse the editor, which now can not manage its
cursor or screen. Cn other terminals, these keys transmit
terminal-defined "escape sequences" to the host. If interpreted
locally by the terminal, these keys would effect the desired
operation (although, as in the previous case, this is still not
useful or desirable). However, with the terminal in full duplex,
they transmit codes to the host which are interpreted as editor
commands which generally have nothing to do with the function
labelled on the key (nor could they be made to do so without
destroying the editor's command set and documentability. The
result is useless keys that cause user confusion ..

- .
These keys never describe operations that the system user

wants to perform. They describe terminal-control operations
such uas "clear the screen", "delete-lines", etc., which are
primitives for a host to control a terminal not for a user to
edit a document. A user never wants to "clear the screen 11

1

he or she wants to "refresh the screen with the document". A
user never wants to "delete characters from the middle of a
line", he or she wants to 11 rer:iove a word or sentence". Thus,
even if these keys could be made to "do what they sayrr, they
would be of little worth.

Another meaning of the term "Function key'' is for keys like
the above, which transmit predefined escape sequences, but are
not labelled. Again, they are not useful in an environment where
key commands are chosen for mnemonic value. ESCAPE-E in Emacs
is "End of Sentence": a set of predefined keys that transmit
ESCAPE-E, ESCAPE-F, ESCAPE-G, etc. is of no particular value or
worth.

Page 9

ye t a th i rd m ea n i n g o f the t e r r:i ·" Fun c ti o n Ke y " (a s o n ~he
Concept 100) is that of a downline-loadable key that transmits a ""'\
particular sequence of characters, a~ inst~ucted t~ by ~he host,
when depressed. This functionality is easily provided in
software from the host, and is not needed, although a~ong the
similar features being discussed, this type of "function key" is
most readily adaptable to use in an integrated editing
environment.

The extension of the keyboard via shift keys (see below)
provides more commands, more mnemonic commands, more symmetric
command sets, and greater ease of typing than any nature or sort
of function keys.

Auto-Repeating Keys

This very common misfeature causes a key held down more than
a second to start transmitting repeatedly as long as it is held
down. Presumably, this is to facilitate underlining, spacing
out, and other typewriter-like features. However, most
implementations of this "feature" apply it to all keys, including
control codes, ESCAPE, carriage-returns, etc.

A very common problem encountered by people learning to use
ASCII real-time editors is created by holding down a key
hesitantly, while groping for or thinking about the next key. All\
this is especially common in the case of two-key sequences, such
as those starting with the escape key. While groping for "escape
d", the Emacs novice holds down "escape", then hunts the keyboard
for "d". After a second, an infinite stream of ''escape"s begins
arriving at the host. The same is true for any key on many
terminals.

The problem is accentuated by the fact that characters are
not echoed locally, but by the host. In a network situation,
the u s er w i th hi s or he r hand r e s t i n g on the " a 11 ·k e y· may no t s e e
the stream of a's appearing until seconds later, at which point
more 11 a 111 s are already on their way.

The ability to insert twenty a's is easily provided by software
(in Emacs, for ~xample, one says esc-20 a), and need not be
provided by the terminal. I have witnessed much more frustration
because of the presence of this feature than for the lack of it;
if terminal-generated repeating is to be had, a "repeat" key that
causes other keys to repeat is acceptable.

Keyboard Features

An excellent feature provided by s9me terminals' keyboards is""
"roll-over", which is the ability of a terminal to remember in
what order keys were depressed, and transmit the key codes in
that sequence, even if some of the keys were depressed before the
others were released. Fast typists often depress new keys before
fully releasing old ones. Terminals poor in this regard ignore
all keys depressed while any other key is fully or partly
depressed> or tran~mit garbage in this case. This causes the

typist to observe "errors'' that he or she did not in fact make.
Terminals that support "two-key roll-overt• will correctly
transmit one key depressed while some other key is down. The
best in this regard, such as the HIS VIP7801, having nn-key
roll-over" will correctly send out the exact sequence of keys
depressed by a person putting the palm of their hand down on the
keyboard.

Tactile or audible, verification that a key has been
adequately depressed to transmit is highly desirable. Keyboard
feedback is a large component in a typist's development of
accurate typing habits on a given terminal. The average computer
terminal is still highly inferior to the standard office
typewriter in this regard. The old IBM 2741 keyboards were
excellent in this regard; IBM did much research in typewriters to
develop this product. In a real-time editing environment, where
response to some commands can take a half a minute, and, in a
network environment, simple echoing of characters upon the screen
can take a second or seconds, the typist's feel for what he or
she indeed typed becomes particularly important. Keys that
ncommit" to transmitting once depressed past a certain point, and
do not transmit again until released past that point would help a
great deal. ~~

Acriustic feedback is less valuable than tactile feedback.
When keys have "clickers", no one seems to be able to agree how
loud they should be. Although potentiometers to control this are
desirable, the tradeoff between noise and feedback should not
have to be made. Not only are noises made by terminals
undesirable in quiet environments (the usability therein being
one of the principal advantages of video terminals), but they may
be inaudible in noisy environments (e.g., computer rooms).
Use by the deaf and those wearing headphones are serious
considerations not to be ruled out. (Much the same is true, by
the way, for terminal "bells 0 , or "beepers", which ought be at
least selectable as an option to be mapped into screen-flashing
or similar silent activity).

The matter of key placement is one of the most frustrating
and impossible to circumvent. Two general keyboard layouts have
acheived popularity, that derived from the office typewriter (which
seems to· rapidly be becoming the standard), and that d~rived from
the old Teletypes. Gross and significant deviations from either
of these standards are a significi.1t problem. The HIS VIP7200
is perhaps the worst offender I have encountered in this regard.
Users continually hunt for the "/" (which is where the "+" key is
on most terminals) and other unpredictably misplaced keys. The "@"
(which, on Multics, causes a line of input to be deleted) is
where the left-hand shift key is on most terminals, with the
shift key to the left of that. This causes many attempts to hit the
shift key to send an 11 @11 , killing a line of typed input.

Page 11

The misplacement of ASCII function and terminal control keys
is a much more significant and widespread problem then bad
pl2ce::ient of ASCII characters. The Teleray 1061 places the ""
Rubout key next to the Control key; the latter is often held down
for extended periods of time: when the former is mistaken for the
latter, the farmer's auto-repeating feature causes large bodies
of text to be "rubbed out" before the user realizes what has
happened. The VIP7200 places the 11 brea'.<' 1 key 1 ~.;hich breaks the
transmitted carrier, perilously close to the "return'' key: most
syster.is (including Multics) use the "break" key to abort (perhaps
restartably) a running computation and/or discarding of unwanted
output, and the result is often loss of a small or large amount
of work, and notable user aggravation. The "breakn key should be
as out of the way and as hard to reach as possible: the same
applies to any key that performs transformations upon the
terminal's state or the state of the communications line.

0 b s c u r e 11 Fe a tu r e s ''

Some terminals implement certain functions, or implement
certain functions in certain ways, that make orgaaized use of the
terminal difficult.

A good example is the !•automatic carriage return and. line
feed" performed by many terminals ~Jhen a character is output in
the last column. In non-managed video environments (i.e., the
so-called "glass tty"), this feature is useful. Yet, when
organized screen management is attempted, software must account
and compensate for this action: 6haracters output in column SO
a c t " d i ff er en t 1 y" than c r1 a r a c t e r s an y w her e e 1 s e . Ex per i enc e ha s
shown that features like this should at least be controllable,
most preferably from the h6st itself.

A classic mis-design in this regard is the flow-control
protocol of the CEC VT52: If it receives characters faster than
it can process them, it sends a "Control S" (Code 023) to the
host. a "Control S" is interpreted by many DEC operating systems
as "Stop typing at once". This works tolerably well, unless the
terminal is used with some other operating system, which may
interpret Control S to mean something else (for example, it is
"Search" in Emacs). In the words of another real-time video
editor implementor, "The DEC VT52 e;oes out of its way to make it
difficult for you to use the Search command. 11 There is no way
that the software can differentiate between a Control S typed by
the user to mean "Search", and one issued by the terminal because
of input buffer overflow. The aforementioned terminal also
p.re-empts the use of' Control Q to mean "output may now resume."
If terminal padding and processing requirements require
flow-control protocols, the charcters sent to control this
function ought at least be host-settable. In general, the more
that is host-settable, the better.

Another good example is the HIS VIP7200, which causes a
bell to ring when column 72 is passed and a printing character is
transmitted. This 11 local bell management" causes the· bell at
column 72 to be an undocumented feature of any subsystem being
used on the terminal. "Why did Emacs ring the bell?" is a common
question. It didn't, is the answer.

It is easy enough for Emacs, or any other program, to cause
the bell to ring when a certain column is passed, if that is what
it wants to do. It is impossible, however, to turn off this
"feature" of the VIP7200 if we do not want this bell to go off.
The real bug here again is the· terminal designer's preconceived
assumptions about the modes in which the terminal would be used.

A worse class of bugs involves mis-inplemented features.
The Delta Data 4000, again, implements nrnsert lines" by
ingeniously placing 11 markers 11 in its screen memory. So i_ngenious
is this implementation that use of insert-characters at a point
above these "markers" on the screen causes the bottom of the
screen to roll backwards, unpredictably. Furthermore, if the
terminal's cursor is positioned beyond one of these 11 markers'' on
an inserted line, all characters that the software attempts to
print there are discarded, in an equally undocu~ented fashion.
Between these two bugs, Emacs has to have a highly special case,
disabling all whitespace optimization for this, unfortunately,
popular and widespread terminal, and refraining from using its
insert-characters feature at all.

r The point of this example is that any checkout of this
terminal using any real-time video editor on any system, or
consultation with any person familiar with these issues before
the release of that microcode would have uncovered these
problems, and hopefully, caused them to be fixed (although in all
fairness, the Delta Data 4000 predates most real-time video
editors).

A related implementation problem is evident in the Human
Designed Systems Concept 100 video terminal, which makes a
differentiation between spaces on the screen put there by
outputting a !!space" character and spaces not written into.
Sundry terminal fe~tures treat these two differently. There is
no obvious difference to someone looking at a screen between the
two, but in order to use the insert/delete features, software
must know which spaces are "real". Tt1is requires that software
attempting to support this terminal keep a special map of which
kind of spaces are where, something that is necessary for no
other kind of terminal. This makes support of this terminal a
burden, and general, terminal-independent software difficult.

Another, less crippling example, is that of the ADDS 980,
which has five different, asymmetric cursor-positioning commands.
Supporting this terminal on any systera involves writing
ingenious code, where simple tables suffice for most other
terminal types. The problem here seems to have been design of
the command repertoire without adequate study of other products.

Page 13

It seems to be the case that many usable terminals have
"un-get-around-able" bugs and. :nis-features, that all persons
dealing in terminal a:id real-time editor support have to program ...,
around, disable features on account of, warn their user ,
communities about, and apologize for (explaining that it i~ not
their software, but "bugs in the terr:iinal 11). If a terminal
support system has to maintain a map of "special marks" or "which
soaces are real" or "ho~.J far I can use on this line withou.t
o~tputting extra spaces to move the end-of-line over'r or contain
highly special-case code for support of some given terminal, that
terminal can be guaranteed to be a source of frustration,
dissatisfaction, and negative remarks. The answer here seems to
be better communication and checkout. ·

Fields

Many current video terminals have the ability t6 highlight
underline, blink, etc.", text, a facility known as ·11 visuals 11 to
the terminal-design trade. These facilities are almost uniformly
designed to support "forms" applications, an admittedly
economically important domain, but not the one we are dealing
with here ..

What I want to do, as an editor implementor, is cause
underlined text to be shown as underlined. Wh~t is more, I would
like the standard ASCII representation of underlined text to
cause underlined text to appear. That is, I want A, backspace, All\
~nderscore, to appear as an underlined A, just as it does on
every printing ter~inal. This requires one extra bit per
character position of ~creen memory, causing the lowest scan·
position of each character to be "force-or'ed" on, if on. Underlined
characters should be deletable by insert/delete character
operations, and the clear to end of line and clear to end of screen
operations should remove them as they would any other characters, and
not leave underlines on the screen (as in the HIS VIP7800).

Current implementations of underlining and other field
features often have problems that make the features unusable even
if the programming difficulties were to be circumvented via
complex field management: the Teleray 1061 requires a screen
position to hold the start-arid-end-of-field marks; this makes it
impossible to display an underlined word correctly. The HIS
VIP7800 limits itself to sixteen underlined "fields" per line.

Editors usually view underlining, highlighting, and other
visual attributes as properties of text (like fonts, case, etc.),
not properties of regions of the screen. When text with "visual
attributes" is moved around or erased by terminal control
operations, the attributes should be moved around or erased with
it. There is a need for a terminal command to say "all text that
I am going to output, until the terminal command that undoes this ""
one, is to be underlined and blinking (or whatever)", as well as
for the currently common commands that affect text already on the
screen.

* * * * * * * * * * * * * * *
Now I will consider features that some terminals have, that

I"" make them extremely usable for managed video environments:

Screen regions

Thi s feat u r e is ores en t o n the Co n '.:! e pt 1 0 0 t er :a in a 1 . It
allows the host progr~m to define a ~ectangular area, a region of
the screen, to which all operations will be limited until the
next such re-definition. This allows ~ultiple documents to be
displayed on the screen simultaneously. Two such docum~nts may
be placed "side by side", the host program redefining the
"region 11 appropriately when necessary. With this feature, for
instance, insert/delete line operations (scrolling) may be
performed on the left-hand document without affecting the
right-hand document. Without this feature, insert/delete lLnes
(or for that matter, ANY of the screen control operations common
on terminals) could not be used at all if side-by-side documents
are to be supported. Then all of the advantages gained by the
use of these features (including clear-to-end-of-line) would
become inaccessible. This ability to define smaller "screens" on
the main screen and operate upon them independently is very
common in video-managed environments.

A limited form of region-definition is available on the new
DEC VT-100. It is like the region-definition feature defined
above, but, (in the DEC implementation) is limited to
11 horizontal" regions whose width is always the full width of the
screen. Issuing of appropriate commands causes the region to
scrpll the way most video terminal~ do when a newline character
is issued on the last line.

Emacs defines a concept of a "window", a slice of the screen
in which a given document is beinB edited. Scrolling through a
document in a window is usually effected by deleting lines at the
top of a window then inserting lines in the middle, and writing in
the new text (On terminals without insert/delete lines, there is
no choice but to rewrite the entire window). This has the disquieting
effect of causing all the text below the window being scrolled to jump
up and down during this operation; the effect on the new DEC terninals
is extremely pleasing; ability to scroll an arbritrary region of
the screen in this fashion would be even more valuable.

Page 15

An optimal implementation of region definitio~ would
1
provide

a two-character escape sequence, anJ the four vertical anc
horizontal coordinates involved as four binary bytes (best offset ""'\
by octal ~O, to allow printability). An optimal imp:ernentation
of region scrolling would provide two two-character escape
sequences (one for up, one for down),· and a number of lines to
scroll, encoded as a 40-offset binary byte. The
previously-defined region would be sc~olled in i.ts entirety,
deleting scrolled-off lines and inserting blank lines for the
lines made afresh. Optimally, the cursor should not even be
affected, although possible implementations of this might have
the cursor as designating one pair of arguments (e.g., the ·
upper-left-hand corner of the scroll-box) and explicit arguments
to the scroll command to define the lower-left-hand corner, or
leave it or require it to be "home" in the region. I consider
the DEC imple~entation, which involves going to the bottom of the
region and issuing linefeeds to scroll up, or going to the top
and issuing ESCAPE·-M's, both one at a time, inferior.

Multiple Operations Per C~aracter

It is highly desirable to be able to delete a large number
of· lines at a time; it is no more time-consuming for a terminal
to move the same body of text to a lower position in screen
memory than a given one (as a Matter of fact, there will be more
blank lines, so it is less time-consuming). It is slow and
annoying to watch multiple lines be deleted one-by-one, then ~
re-inserted one-by-one when scrolling is needed. The software
knows exactly how may lines it wants to insert or delete, and the
ter~inal can do it efficiently, but the representation of the
commands and the transmission line speed make multi-line
insert/deletes, which are extremely common in video editors,
unattractive. Extended line insert/delete commands that take a
count of how many lines to insert or delete would be extremely
useful. Similarly, a 11 insert characters!' or "delete characters"
command that took a count of how many blank character positions
to open up or how many to delete would be attractive.

Note that opening up many character positions for character
insert, with the software then overwriting them, is preferable to
"enter insert mode", "write the characters"·, "exit insert mode".
Placing terminals in "modes" is highly dangerous. Any
unanticipated problem that may occur while the terminal is in
th8t mode can have disastrous effects. However, the usual
alternative offered to insert-mode is a terminal command that
opens up one character position (for example, on the Teleray
1061). This requires many overhead characters to be sent for
inserting a multi-character string, which :nakes it less
preferable than "insert mode", in spite of the proble:ns of the
latter.

* * * * * * * * * * * * * * * x

Now I will discuss features that most terminals don't have,
but that I would very much like to see.

Large Screens

The 2li x 80 video screen is a major limitation_. Formatted
documents may not be viewed in their final form. Programs whose
listings are usually produced on online printers develop a
cramped, 80-character style when prepared on 24x80 terminals.
Attempting to read or edit text·typed in on wider, printing,
terminals results in either 11 folded over" lines, which are
confusing, unsightly, and reduce the effective screen utilization
even further, or truncated lines, which throw away information
and are most unnatural to edit.

Effective screen-only interactive environments necessitate
dealing with many documents, programs, conversations, texts,
etc., at once, just as the printing-terminal oriented user
will have many books and listings open. The approach being taken
by advanced video systems is to have many regions of the screen
with different displays in them. The 24 x 30 environment makes
this all but impossible, making video terminal interactive time
sharing often frustrating.

For word-processing systems, a 60-line screen, at least 85
characters long, is a bare minimum .. for full-line-width
programming, 12P columns is not unreasonable. It is true that
the time required to transmit large screens like this is
potentially problematic, but effective screen utilization and

,.. management reduce the need to do this frequently.

The limitation on screen depth is often ~s serious as that
on screen width; the inability to see a \Jhole "eight and a half
by eleven" page of text, or a section of a program more than 24
lines long is frustrating and problematic. Attempts to use
multiple screen regions to increase the effectiveness of the
screen cause even smaller fragments of text to be displayed.

Line Speed

While not strictly a terminal issue~ line speed seems
intrinsic to effective utilization of video display·devices.
Many terminal features (e.g., insert/delete lines), while
valuable at any speed, are present to avoid intolerable
screen-filling delays at low speed. Effective screen management,
when many documents, programs, and scripts are involved, can
involve constant refreshing and rewriting of large portions of
the screen. Having reasonable line speed (1200 baud is in some
sense the barest minimum for this purpose) allows powerful
techniques such as interactive search and replace operations,
showing document context aro~nd each occurence of the string
being searched for or replaced, to be shown. At low speeds, the
screen-filling engendered by such techniques would make them too
slow and frustrating to be usable at all. Reasonable terminal
speeds allow entire modes of interaction that could not ev~n be
considered at lower speeds.

Page 17

The same is even more true of systems running at 10 kilobaud
or better. This can usually be acheived only with hard-wired "11111\

lines, or share~~logic systems such as the kind described below.
There are enough of these hard-wired lines in use today that
error-free operation at 9600 baud (or· better) is an important
criterion of terminal acceptability.

Shift Keys

A large repertoire of 11 Shift 11 -type keys adds tremendously to
the potential command-set of an editor. By a 11 shift 11 type key, I
mean a key which, when held down, affects the output of other
keys. "Shift" and "Control" are generally like this, and with
their aid, 50 or so basic keys can be made to generate 128 ASCII
characters. Additional keys of this kind would generate
add i ti o n a 1 " ch a r a c t e r s " v i"a a n enc o d i n g t e c h n i q u e in v o 1 v in g a
reserved character, such as described below. The use of these
keys allows repeated sequences of complex editor commands,
without the possibility for error engendered by possibly
mis-synchronized multi-key sequences.

Each "shift" type key provided doubles the effective nu:nber
of editor commands, by virtue of any previously describable
combination of shift keys (and some basic key) being available
with or without the new shift key being depressed. i"IIT has for """
some years now been experimenting with keyboards with two extra
shift-like keys, "TOP'' and !'META", which may be depressed or not
depressed independently with any other key. This allows a
flexible and symmetric editor command set, for instance, "Control
K" is "Kill a Line", META K is "Kill a Sente-nce", and Control
META K is 11 Ki11 an ex pr essio n". Similar keyboards are al so being
utilized at Stanford University.

The standard technique for encoding these extra keys is to
reserve one ASCII character for indicating that the next two
characters to be transmitted are an encoding of which shift keys
were depressed, and what basic character was struck. A bit
pattern is reserved within this representation to indicate that
the basic character used as the reserved character was itself
struck on the keyboard.

Thus, if Control \ (034, octal), is chosen as the reserved
character, then (recalling that "a" is 141, octal), then the
following character sequences might be transmitted by the
follo~ing key-combinations:

a
A

141
101
001
001

(lower case a)
(Shift (u~per case), a)
(Control, a)
(Control, Shift, a)

(All these so far are standard
on all ASCII termin~ls today)

034 001 141
(Meta, a)

034 002 1l+1
(Top, a)

,,...
034 003 141

(Top, Meta, a) (i~o te the bit or'ing)
034 002 001

(Top, Control, a)
\ 134 (\)

03ll 000 034
(Control \)

The aforementioned f··iIT keyb-oards go one step further in
treating "Control" as an "extended bit",· w!1ich (via software)
represents non-ASCII constructs such as 11 Control 3 1r via a
formalism like the above. This augments the power and symmetry
of the editor's comm~nd set even further.

Overstrike Capability

Multics makes frequent use of overstruck characters. It is
central to the entire APL implementation. The siwple case of
overstruck underlines appears in almost every Multics file.
Multics users expect to see overstrikes on their terminal output
and line printer output. Although it is clear that bit-wise
memory, or at least n-tuplicated character memory is necessary for
the implementation of this feature, it is highly jesirable, and
lack of it is one of the most common complaints of video terminal
users on Multics.

Positional Sensing Devices

The entire theory of real-time video editing centers upon
the user's positioning the terminal's cursor to a character,
word, paragraph, or other construct that he or she wants to
delete, modify, move, add text to, etc., and then issuing
appropriate commands or inputting text to effect the desired
change. In most implementations, cursor movement is achieved by
the user striking keys whose documented function (in the Editor)
is to cause cursor movement; the editor responds to these
keystrokes by both moving the cursor and taking cognizance of a
new "point of interest" in the document. being edited.

Another common and effective use of cursor movement is to
allow the user to select one of a set· ("menu•') of options
by displaying the possible options upon the screen, and allowing
the user to position the cursor to a given option, and "select!!
it by depressing some key. This technique is extremely effective
in relieving the user of the need to remeaber a large number of
options or features, or their names.

Some advanced word-processing and video-oriented editing
systems make use of electromechanical or electrowagnetic devices
attached to the terminal to move the cursor for these purposes.
A fairly typical one is the 11 mouse", a small box (named for its
size and shape, its cord being its "tail!!) which can sense in what
direction and hbw far it has been moved. Sometimes this is implemented
by wheels on the bottom of the mouse, controlling potentiomefer:s,
and other times by inertial sensing devices or more sophisticated

Page 19

analog devices. The direction a:1d length of movement of the mouse in
the X-Y clane to can be deterQined in the terminal (by samplinf, of
the analog devices, which is relatively cheap). The ""'\
terminal responds instantaneously to mouse movement (the user
moving the mouse on. the table) by 11 tracking" th·e mouse, which is
to say, moving a (not necessarily the "only!') cursor around the
screen, "mapp-ing" the mouse's movement on the screen. This
requires no interaction 0ith the host. When~ button on the
mouse is depressed, the mouse's "position on the screen" is
tr an sm it t e d t·o the host ; enc o d e d . Mo st forms o f mi c e prov id e
several buttons to increase the potential command repertoire.
This facility allows a given text construct, menu item, one of
several displays on the screen, etc., to be identified instantly,
even in the worst load and response-time situations. There is no
need to press keys of any kind, perform searches, guess word,
character, or line counts, or so forth, with even less load on
the host then would otherwise be required.

Among other implementations of position sensing devices
are "joysticks", which are directionally-sensitive batons which
~~y be moved in the X-Y plane to effect cursor movement, light
pens, which are photosensitive devices applied to the screen by
th~ user, which sensing the rast~r scan, enable the terminal to
deduce the screen position where the light pen was placed, and
magnetic taSlets, which, by scanning a rectangular table with
electromagnetic waves, allow the placement of a magnetosensitive
rrpen 11 to be used to track user movement over the screen. '°"'

liote that all of these devices, from the least
sophisticated, expensive, and conveni~nt (mice), to the most
elaborate (magnetic tablets) have identical features of insta~t
response, reduced load on the host, better user· interaction, and
small load on the terminal processor.

(It should be pointed out that tracking of a mouse or other
positional-sensing device by the host is highly desirable, and allows
sophisticated forms of interaction such as blinking a menu item to
which the mouse is pointing and so on. However, this requires
either sampling of the analog devices by the host, or the transmission
of an amount of information which is not feasible over com~unications
1 in es •)

Downline Loadability

The ability to place programs of my own choosing in
terminals would substantially augment the performance and
response of Multics Emacs. Through the implementation of
admittedly complex protocols, the terminal and the remote host
can split the computing load of real-time editing. This is NOT
to say that local terminal editing is desirable! An integrated
editor interface that provides po~erful functionality,
consistency and. ease of use, arid responsiveness is desirable no
rn~tter how it is implemented. User-provoked interaction via
"transmit keys" and non-integrated software designs does not fit
this criterion; integrated, distributed processing does.

Downline loadability would provide for the ability to
customize all of the interface requirements and de~igns
discussed above without the need for customized terminals.

Novel Design·

Many interesting, integrated designs for video terminal
interfaces have been devised. Earl Killian and Eugene Ciccarelli
of Bolt, Beranek, and Newman (Cambridge, Mass.) have developed a
sche~e where every screen control operation is defined as an exchange
of a rectangular screen area with some other rectangular
screen area. An infinite blank area lies offscreen;
insert/delete lines and characters, as well as region management
and selective clearing all are special cases of this operation.

Downline loadability would provide a path for
experimentation with such interfaces and an evaluation of their
effectiveness.

* * * * * * * * * * * * * * * *
The long run:

The most effective character-oriented screen managment
systems I have seen or heard about (MIT AI Lab, Xerox PARC,
Stanford AI Lab) involve bit-map screen memory controlled by a
minicomputer, with video being generated at the minicomputer
location, and distributed by coaxial cable. A single
minicomputer interface, via high speed to a mainframe I/O
controller then suffices, replacing many communications
inter£aces. Or, in remote situations, a high-speed
communications link between the mainframe's communic2tions ·
processor and the minicomputer suffices. Shared software, shared
controller hardware, common screen memory, and shared I/O
resources result from this design. The shared high-speed link
allows screen filling at megabaud speeds, allowing a whole new
genre of interaction techniques, without the need for expensive.
modems for each terminal.

The use of bit-map memory for video implies the abilit~ to
support graphics, and use multiple fonts, thereby allowing
typesetting to be done on line. Overstrikes simply fall out; the
single minicomputer interface can be designed to implement any or
all of the terminal communications features designed above.

The centralized controller approach also allows more
efficient character transmission. No human typist can type
faster than 300 baud, no matter what the OUTPUT speed of his or
her terminal. Input characters can be sent over telephone cable
for long distances at very low speeds with no loss of
response at all, allowing all the bandwidth available to be used
for output.

Page 21

Hote that full-screen transmission (as done by !'local
editing" terminals), involving "translilit keys", transmits huge
volumes of data at line speed, involving severe taxing of "'Ill\
communications processor and line resources. Character-at-a-time
real-time video editing makes no such demands, .and is infinitely
1:1ore powerful.

Many of the centralized-controller.facilities marketed
are oriented tow.ards line-at-a-time transmission an{i synchronous
lines. While the encoding technology ·(e g., bisyn~; Polled VIP)
is not of particular interest, the necessity of the user to hit
11 transmit" is unacceptable.

It should be pointed out that binary synchronous
communications, with headers and trailers and all natures of
overhead, is not particularly inefficient in a
character-at~a-time environment. If a user is typing, sending
one character at a time at typing speed, (and presumably, that
character is being echoed at typing speed), twelve characters
per second will fly back and forth for a good typist. If the
basic line speed is fast, this is negligible, even at a 1000%
overhead (10 overhead characters per every one) is still only
120 characters per second. If the line speed is lower than that,
more than two people can't even type at the same time. For
output, output is sent either charaters at a time, which is shown
above to be no problem, or screens at a time, which is efficient.

I think the near future of interactive video systems lies in
these concentrated, character-at-a-time, bit map environments.

* * * * * * * * * * * * * * * * *
Summary

The following, then, is a summary of desirable features
in video terminals for real-time editing:

o Barest mini~um: without these, a terminal may b~ considered
totally unus.able.

o Full ASCII, upper and lower case, transmit all codes.
o Standard interpretation of ASCII Control key.
o Any "editing" or screen control function that exists

is accessible from host.
o Capability of completely full-duplex (remote echo)

operation, with no interference between keyboard and
screen, at any speed at which terminal is claimed to work.

o Minimum 24 x 80 screen.
o Ability to move cursor to any location regar~less of where

it is. ""'
o Ability to erase to end of line, and erase all of screen.

,.,..
o Necessary features, without which a terminal is "poor,'' although

possibly not totally unusable.

o Quick, automatic recover fron1 n-error 11 •

o All terminal control operations operate in a uniform,
context-independent manner at any point on screen.

o Ability to insert/delete lines (absolutely necessary
at low speeds).

o Ability to insert/delete characters (ditto).
o Blinking cursor, inverting if a "box".
o Minimal padding. Padding on any·operations other than

clear screen and insert/delete lines is suspect. 11 Exact 11 ·

padding is completely unworkable.
o Multi-key roll-over.

o Highly desirable, uncomrnon features, that would help a lot.

o Larger screen than 24 x 80.
o Host control of all variable function.
o Ability to have underlined characters withou'c. need for

"fields".
o "Shift-like" keys that cause prefix sequences to be sent

for each key depressed while they are held.
o Rectangular "region'1 definition, that lir.iits all screen control

operations to that region.
o Scrollin~ of regions.
o Ability to insert or delete more than one line or character

at a time ..
o Bit-map overstriking
o Character-associated text attributes.
o Position-input devices.

o Bad features to be avoided. These cause the most cursing.

o Operating-system or product-line dependent assumptions
in choice of characters and protocols.

o Self-repeating keys.
o Poorly placed keys, deviating significantly from

standards, and control-function keys to easy to hit by
accident.

o Unreliable operation at high speeds.

I would like to thank Earl Killian, Charles Frankston, Lee 5.
Parks, Dave Moon, and Robert Kerns for their valuable coramentary
upon this document, and suggestions thereto.

(END)

Page 23

