
MTB - 422

MULTICS TECHNICAL BULLETIN

To: MTB Distribution

From: Charles Hornig

Date: 26 June 1979

Subject: Pseudo-terminal support for Multics
\

Introduction

Page 1

This MTB describes a proposal to provide support for ·
'pseudo-terminals' under Multics. A 'pseudo-terminal', or PTY,
is a software object which appears to one process as a MCS
terminal channel and to another, its 'owner', as an I/O device.
This channel behaves in the standard way and can be used in
accordance with its service type just as a FNP terminal. The
PTY's owner process plays the part of the physical device. It
signals dialups, hangups, and quits; provides data for input; and
accepts data written over the terminal channel. The owner ·
process in effect simulates a top level demultiplexer. PTY's are
used with success on many other operating systems.

lihY ~ them?

PTY's provide a means for a user process to simulate a ring
zero demultiplexed channel. This means that support for new
communication protocols which would normally be implemented as
ring zero demultiplexed channels can instead be done·in a user
process. This makes support for experimental and infrequently
used protocols much simpler. While a process using PTY's is
clearly much less efficient than support in ring zero, user ring
code is also far easier to develop and debug. PTY's can be a
'quick and dirty' way to support new protocols. This is
especially appropriate for site-specific protocols. Sites often
do not have the experience or the time to develop a ring zero
demultiplexer and would prefer to pay the user ring performance
cost.

PTY's are also appropriate for some network protocols which
are difficult to implement as demultiplexers. PTY's could be
used to allow remote login for a network without putting all the
network support into ring zero.

PTY's also can provide the 'remote login' function for a
Multics site which is not on a computer network. It is often
desirable to be able start up a new process 'on the side'. Users

,. at current Multics ARPAnet sites often do this now by opening an

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics project.

MTB - Page 2

ARPAnet connection back to the local host. Using PTY 1 s for this
function will allow all Multics sites to do this in an efficient
manner. In addition, the user could have the intermediate
process perform conversions on the data it handles. An example
of this is the EMACS TELNET window capability, which could easily
be extended to work with PTY's.

The remote login capability could also be used to develop
more sophisticated benchmarking tools. A driver program could
log in many remote jobs and simulate an interactive workload more
accurately than present tools.

Implementation

PTY's will be implemented as a MCS top level ring zero
demultiplexer. PTY channels will be defined in the CMF with
names like "pty.xxx''· All CMF parameters can be specified for
them as for any other channel. "pty" is defined as a multiplexor
channel of type "pty". On the MCS side PTY 1 s will support only
those control orders processed by the TTY DIM. They will support
all TTY DIM modes and those modes defined by the PTY owner at
attach time. There will be a gate, "pty_", into ring zero to
control the owner side of PTY channels. Only users with access
to this gate can control PTY 1 s. The functions provided are:

attach:

write:

read:

Simulate dialup of a listening PTY channel. The caller
can specify a star name to specify to what channels he
wishes to be connected and a structure defining which
modes are permitted for this channel. The system will
search the PTY's whose names match the given star name
for one on which a "listen" order has been given. If
one is found the MCS channel is given a dialup
interrupt and the caller is givan a handle by which he
can refer to the channel.

Write data into PTY input buffer. Moves characters
into the PTY input buffer. If the PTY was waiting for
input a wakeup is sent. Users will not be permitted to
queue more than a certain amount of data at a time in
ring zero. If this amount is exceeded ring zero will
not take all the supplied characters and will send a
wakeup to the owner when more space is available.

Read from PTY output buffer. If there are not enough
characters in ther output buffer to fill the callers
buffer a wakeup will be sent when more become
available.

interrupt: Send a 'quit' signal. Causes "quit" to be signalled
in the PTY's process if it has enabled quits.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics project.

MTB -

detach:

Page 3

Simulate hangup of PTY channel. The PTY channel is
hung up and the channel is released.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics project.

pty_

Name: pty_

The pty_ subroutine gives the user access to the Multics
pseudo-terminal facility.

Entry: pty_$attach

pty_

This entry attaches a pseudo-terminal and simulates a dialup
on the associated MCS channel.

Usage:

declare pty_$attach entry (char(*), ptr, fixed bin (71),
fixed bin, fixed bin(35));

call pty_$attach (name, pty_data_ptr, ev_chn, subchan,
code);

where:

1. name (Input)
is a star name specifying the class of PTY channels
desired.

2. data_ptr (Input)
points to the following structure, declared in
???.incl.pl1:

(This structure will contain information about which
modes are legal for the channel.)

3. ev_chn (Input)
is the name of an event channel over which wakeups will
be sent then output data is available or there is room
for more input data.

4. subchan (Output)
is the PTY subchannel assigned. This number is used by
the other entries to specify a particulat channel.

5. code (Output)
is a standard system status code.

Entry: pty_$read

This entry reads characters out of the PTY's output buffer
into the caller's buffer. If the buffer is not filled a wakeup
will be sent when more data is available.

pty_ pty_

Usage:

declare pty_$read entry (fixed bin, pointer, fixed bin (21),
fixed bin (21), fixed bin (35));

call pty_$read (subchan, buff_ptr, nelem, nelem_tr, code);

where:

1. subchan (Input)
is the subchannel number returned by pty_$attach.

2. buff_ptr (Input)
is a pointer to the caller's buffer.

3. nelem (Input)
is the size of the caller's buffer in characters.

4. nelem_tr (Output)
is the number of characters actually transerred. If
this is less than nelem a wakeup will be sent when more
data are available.

5. code (Output)
is a standard system status code.

Entry: pty_$write

This entry moves data from a caller buffer into the PTY's
input buffer.

Usage:

declare pty_$write entry (fixed bin, pointer, fixed bin
(21), fixed bin (21), fixed bin (35));

call pty_$write (subchan, buff_ptr, nelem, nelem_tr, code);

where:

1. subchan (Input)
is the subchannel number returned by pty_$attach.

2. buff_ptr (Input)
is a pointer to the caller's buffer.

3. nelem (Input)
is the size of the caller's buffer in characters.

pty_ pty_

4. nelem_tr (Output)
is the number of characters actually transferred. If
this is less than nelem a wakeup will be sent when more
space is available.

5. code (Output)
is a standard system status code.

Entry: pty_$interrupt

This entry causes the "quit" condition to be signalled by
the PTY if it has enabled quits.

Usage:

declare pty_$interrupt entry (fixed bin, fixed bin (35));

call pty_$interrupt (subchan, code);

where:

1. subchan (Input)
is the subchannel number returned by pty_$attach.

2. code (Output)
is a standard system status code.

Entry: pty_$detach

This entry detaches the PTY channel and simulates a hangup
on the MCS channel.

Usage:

declare pty_$detach entry (fixed bin, fixed bin (35));

call pty_$detach (subchan, code);

where:

1. subchan (Input)
is the subchannel number returned by pty_$attach.

2. code (Output)
is a standard system status code.

