
Multics Technical 8u11etin

To& 0iatrihution

From: "'1arsnel 1 Presser

Date: 09/19/79

Subject: A Multics Macro Processor

I NT ROD UC TI or~

The oral history of Multics includes some talk that there ought
to be a macro processor as part of the standard product. While
this facility alreaoy e~ists within a few installed products,
e.o. editors, alm, runoff, etc., es well as one personal
stand•alone general purpose ~aero Processor (hereafter ca11eo
Falksen's macro, described in both >udd>m>Jaf>prog>~acro.info,
sys M and ~TH JQS bY J Felksen) , there is no consensus as to
what e standard macro processing facility should be, This
document is a fir~t attemot to:

Ct) Propose that a variant of Falksen's macro be i~bedded in the
PL/I compiler to satisfy the ADP development need described
below,

(2) infor~ the ~ultics commun;ty of the more important ;ssues,

C3) describe some existent macro processors.

BRIEF HISTORY

Macro procP.ssing seems to have arisen as a feature of asae~blers
~hen rrograw.mere desired e similar piece of code, often
parameterized, to b~ executed freouently but without the ovP.rhead
of a subroutine call or the tedium of reproducing the code on
manv punched cards. Soon clever people discovered that all sorts
of wonderful features could be incorporated into macro assembly
languages, ;ncluding cond;tional macro time text replacement,
iteration, recursion, local macro time variables, etc, ·Why limit
these delights to assembler programmers? IBM. actually built them
;nto its PL/I compiler1 and the Multics PL/I %include faci11tv is
a sfmPl e, ~ut tJsehil "'aero processing tcol. These days, no ~d; tor
with oretensions 1s without somethi~g it ca11s macro proeeasi"~
ebil; ty. Similerly, many free standing macro processors exist,
~---.... -----.. -~ _____ .._. ____ _~-...------ -·· ··------
Multics r-roJect internal wor~ing documentation. Not to be
reproduced or distributed outside t~e Multics proJect.

Page 1.

Multics Technical Hulletin

l'

somP. that see~ to bP langqage•oepenoent, and others that have the
ab;lity to gen~~~11y ~reprocess text hefor~ it is to be subject
to another translator.

~HO ~ANTS A PREPRGCESdUM ANG WHY?

There seems to·~e a wide variety of oosit;ons on the need for a
macro processor. Some feelinq exists that macro Processing in a
~dqh•level lanr;,uage is in itSfdf a "bad thing," 81'\d that ;ts
existence woulrl cause an nxP1osion of oseu~o proqramming
1anauag~s and, invasion of iaiosyncratic phrases into PL/I co~e,
diminishi"g un~erstandibility, and m~inteinability. Certainly,
there we~ a ta~ nn the introouction of macro facilities in alm
for a l<'nr1 wl'l;le, although for a different reason.

Other~ merely ~ish for the avail;bility of named constants, but
rot ;n the se~se of the rreeent PL/I version of constants.
This neea could he ~et by pre·e~pansion of the source segment
throuQh en editorr repleci iq all the na~es by their constant
values. It m;q~t be orefera.ble to alter the lanquage
s~ecifie~tion tc ~eet this rathe~ limited need.

lhPre may ~e a co~mercial need to produce a macro processor to
satisfy present or potential customer demand. In this case'
suggestions are m~de to reProrluce the facilities in the IBM
preprocPssor, Amon~ the opponents of this is Dave Ward, who
i~plemented a GCUS vers;on and suqgests that the ISM product is
both ineleqent and a ~it messy to implement. Unless commericel
considerations are rathar pressing, mere CQ~pat1bi1itv iS not
terribly ~ttractive.

Thero is~ co~~nn1y voiced desire to be able to maintain a single
source sPgment which could he conditionally compiled tor
development systems like AnP, DPS/E, etc, or for the standard
prof'lllct. Exact1y ~!'lien features are re11uired is not clear, but a
m i n i "' 8 1 set o f u s ~ f\..1 1 f e e t u r es need cont a ; n no m. o re t h an :

(1) sinqle•level, rathe~ than nestec, macro definition ability,

(2) less sophisticated iteration and Parameter pessin~ mechanisms
then founri in ~lm, Falksen's ~aero, MIDAS, etc.

(3) conditio~al com~ilation o~pPnding on the existence of defined
macros or their va1ues as character Strinqs,

(4) aroument control fror11 the commend level.

The macro nrocessinp tacilitv to meet these needs can easily be
Met with so~e revisions to falksen's macro. lndeed, a subset of
its fecnftiP.s, wit"' A few extensions, that l neve alreadY built
in and use~, seems t0 ne sufficient for these needs• In

11-iu 1 t ; c s T e c ti n ; c a l 1.1 u 1 l e ti n

part;cu1ar this incluoes macro ,iefif"ition, if•then•else
structures, pos~tional parameters refere~ced bY nUmber1 macro
libraries, tests for command line rrou·~ents, and a few other
feetures.

IF wr: ·~Af.;T A US£FUL1 E.XTE.NDAHLE PRiiDIJCT IN TtiE NEAR FUTURE:, THIS
SEEMS THE. 8EST \•:AV TIJ GO.

I s s u Es AR J s l 1\l G l I\ ~-~Ac r (j p ;.:rn ct. s s I 1\1 G

1. Should the ~aero processor be free-standing or integrated
into, sav, thP. PL/I compiler?

As var;ous r·•acrc processing facilities al,,ady exist elsewhere,
for the in•nouse ~evelop~ent need menttened above, PL/I source
segments seem t~ be the obvious candidate for "macrO•iZetion."
Furthermore, as everyone "emends the conststpncv of line numbers,
the integration of ~aero facilities into the PL/I compiler seems
;nf;nitelY preferahle to an ;ndependent Pre•compiletion expansion
~hase, although PL/I formatting programs which alter line numbers
exist in thiS manner. ~aero definition an0 expansion can occur
1~ the lexing phase of the compiler, Just as %i~clude expansion
now occ~rs. The macro processor s~oulo have a set of subrout;np
;nterfaces, som~what lik~ those of Falksen's macro, for these
Purooses. ln this way ninimal reworking of the COl'llPiler will be
reQuired and the facilities can be made available for other
translators. lt ~iqht also be useful to consider whet, if any,
alterations could be done to indenting or~gram~ to· recognize
macro exPressions.

~hi le ~ost assembly languagP macro processing is based on lines
er statements and much editing macro activity is based on
charect~r strina~, it is reesona~le to suggest that high•level
lanauao~ macro processing be based on tokens, in Darticular
"identifier-like" toKeng. (Should anvone really use a mac~o
processor to redefine, Ray +to be•?) Furt~ermore, will not the
ex~~nsio" of either character strinqs imoedded in identifiers or
erit~metic expressions create all kinds ~f nasty confusion? This.
tokenizir;c.i approach is also compatP:ile with the present use of
%incl11ete on trie Pl.II COITIPiler. Stronq objections to this idea
should make themselves felt soon rather than later. There is an
aovantage to line•basea Cor statement-baser) macros in that the
list1rps can be ~ade easier to interpret. It programmers Place
more than one eomnlieateo macro on e li"e, the relationship
het ween 1; ne nunit>ers ; n the un.e)tr>ande.1 anrJ expanded sources
beco~es proble~atic. The use of indent and formet_P11 could make
for greoater rl'.'1H1abilitv. See section S below for fl1rther
discussion.

Page 3.

Multics Technical Bulletin

',..,

3. Should the t.r.i~SH~ring of roeero expansinn or defirdtion re'.':1uire
a soecial macro character?

Alth<.>Uqh ft "'BY .. seen" a o1t CUIT!hersome to incluoe a l. to invok@
the macro Processor, certain nenef its accrue. The macro
pr~crss~r can h~ ~ade more efficient if the tri~ger ehar~Cter is
used, ~s ft ~Oijld not renuir~ a 1ookup of every token to
determin~ if ~dcro expansion were reeded. Furthermor~, it
eliminates some a~Diguitv end certainly makes the intention of
the statement ~d~e el ear. The trigger character is t~erefore
useft.Jl in delinel"a,tiJ"lg non•standar•i PL/I co"st,.ucts. !Jn tlie other
han~, consider the statement:

f re d : co r1 t r o 1 _ f u n c t i on C ri o rm ·l n , f'I e r o 1 d) ;

Prognammers mev wish to be ehle to writ·e this state~ent and have
it c~nditiona11Y processed, so th~t in som@ circumstenees, the
rig~t-hanrl•sirle is to be viP.wed as a function call or array
refe~P.nce, whi1e ;n others, as a macro to bP. e><panded~ The
reouiremerit of a tr;gper character would provide soll"e di'fficvlty.
If ~rogr~mmers mostly Pgree that the invocation of ~acroa ought
not 10 re(uire a srecia• trigger symbol, it th~n rem~ins a
Prob1e~ of cfsti,..,ouishirg between the ~aero call a~d the literal
eharricter string of ihe same ne~e. This ca" be done bv (1)
r@ou; ,.;,..,g al 1 macros to be tr;pqereci by the specieil svmbol r (2)
plec,ng srme liter~l hrackets arouna tnkens that must not be
P.><PatH'led, or ('3) a macro pseudo-on which temporari lv suspends
e>cea11sion of c"rtain rnf'leros. The last altern~th1e would look the
messiest, ano the.second would probably be the most convenient if
sensible users tried to avoid using a~b1guous na~es.

4. S11ould thP.re hr! il'!lrnerJiate e•pansion of rr!acro definitions. or
Shoutd th~se he dnne at time of invocation?

T he pro h l em w i t h i r.• roe d i at e e ><pans 1 on i s t hat t he or de r of
defin1tiol" hecorneH critical. F('lr example, the followfr!!;J seouence
(where t f'l e def i n e p s e 11 cl o •op c au s es i t s f i rs t a r gum en t to be
l"er°)l.1een t'Y Hs ~eeond w!'!en encou,.,tered and undefine removes its
argu~ent fro~ the list of expanoible macros):

rlefi~e(MEP,~arshall_Preaser)
defineCivan_the_1errible,MF:P)
unde 'fine C 1'~EP)

will ex~ard lvan_the_rerrible to ~EP. if macro definitions ere
e • p a rHi E" ri a t e a 1 l t i !11 e a n d t o ~·1 a r s h a 1 I .P r e s s e ,. ; f e)I Pe n s i o n i s a t
define time. Suggestions welcomed as to which methoa is
p re 'f er ab 1e 1 As t h ; s i s ., o t "'ere 1 y a q u est i On of i mp 1 em en t at 1 on '
but rather a fundamental desiC!n crioiee, The use of a trigqer
cheract~r greatly Simolf fies reading of the source segment, makes
the pr0Clramn1ers ;l"ltentioris clear, resolves auestfOns of order
depenrl~~CP in mAcro definition, en~ mav Prevent amhiquities with

Page 4.

Mu 1 t i cs T,. ch n i c "'1 8 u l ·1 et i n

non•mac,.o ccnst,.ucts in th~ source seqment. Closely allied with
this pronle~ is that of the rescenntn9 of mRcro exPansions to se~
if theY contain mo,.e macros tc be exPanded. It t~is is done th~n
the seqLJence

def;ne(freo,oeorqe)
define(georoe, f,.ed)

will lead to cnaos. lf rescannino ;s either forbidd~n o,.
reouired to be maae explicit, then cha,ces of infinite recursion
ere not likely. Alternativelv, recursi~n and ~utual ,.ecursion
are verv useful tpchniaues and should b~ permitted, although thev
may prove ~ore exPenstve than iteration when both are possible.

5. ~ow Shoul~ macro e~p~nsions apoear in compiler listings?

In the case of named constants , for ~xample, it may be useful t0
be able to see hoth the name and t~~ numerical vaiue to which t~
;s aetineo at debLJq•t;me. s;milarly tl'ie treetment of ltn~
numbers in compiler P,.ror listings can lead to confusion. This
is a n~n·trivial ouestion. Most ~aero assemblers provide the
d~fault thAt exnansions do not appear in the listinqs. This
str~t~qy is not ~seful for debupoinp purposes in neneral. ~hen
us;nq the POP•11 f;H·'iAC pacif:aqe, a set o'f structurP.d prograrnminq
macros, it is not useful to see the expansion of these macros,
but of user•aefined m~c,.os. Shell we have an option thet
~ndicAtes that the 1 istinq is not to include macros found in
svsteir. nacro librariP.s·? :.-.hat Are the ;,r,pJications of tliic:;
strategy tor the use of probe? Consider the case of th~

declar~tion macro, ~"'ic 1 1 can be vieweo in some c;rcumstanees as "
generalization of t~e tt likett ~ttributP. Most users will not went
t o s e e t h P s ~ e x p an <1 f' ('f. r1 e n c e t h e n e e rl f o r e 1 i s t ; ng o f f Io n
tog~Jle seen~s useful. Alternatively, each macro may h~v~ imbedrle".l
within its definition ~ Pseudo·o~ inrlicatinq whether it is tote
expanded, or pOSSibly a control argument can he used. The re•l
issue, ho~ever, is the selective listing of the ~aero ~xpensior•

t>. wh~t •'~ultics stAncards Sl'loulrl be placed on the us.- of !!'aero
facilities'?

7. Shoulrl arquri1erit~ to macros he bv position, keyword, both or
"either?

vdiat .::icti0n~ ~houl0 occur if the number o+ arouments in the cal 1
is not the Saffie as tne numher in th~ rlefinitiOn? MIDAS, for
example, rrovi~es a ~ealth of oarameter nassing mecl'ianis~s, es
well as rlistinr,iuishing between unsoecified ar~rnments and
e>eplicitly null•spec;f;e<i argumEH'lts. ,,~,dle this may be a very
useful function, ; t is imple~enten bv a larqe set of special
sy~hols to inaicAte the nature of the parameters beinq passe~.
Those not quite fal'l'il1ar with the system "dll find tne une>epanded
source very difficult to understand. Even with e>eperiencer the

Pape 5.

.,, !

Multics Technical Hullet1n

r
'·

MID~S eppro~c~ ~ev verv well be overkill. Experienced users
mi~ht wisl'l to' comment on this. f\t!!yword pararn~ters malce for much
more r~adable c~d~, although they chance the format of a macro
cell to somethi~g different than that tif a standard
function/subroutine call. T~e similaritv of appearance of m~cro
calls tr.- func·tJon calls may ~~11 prove to ~·e A very hMidy
feature. ~hi le reference to oarameters by n~me rather than by
posHion nurrber,r "'•P• iq, &2, etc., prnr!uces ,.,,ore r1~,'\dahle co(~~,
manv r.·acroriroe"esso~s rec:iuire the latter kind of refe~ence for
eBs~ of i~plem~ntation.

a. •diat kind of macro time vAriables, if anv,. are requirt><i'?

Felksen's macro provides scalars, arrays, lists, anrl aueuesr but
onl v of ch~racter strinqs. These may be evaluated and
~anioulatea erith~etica11y. Giv~n this ability, is the creation
of an arithmetic aata type neeessarvr or m~rely useful?
fal •sen's macro also proVidE>s local, iriternal, and external
variables es well as such ~aero constructs as the number of
erg•11T1ents passe<:'I to the cel 1. ~'-hat; if any, other faci 1 ities are
adv ·lnt aqeous 1

~. hat is a rensonahle sat of oseudo·o~erations eno built•in
ful'l:-:tions'l

Certain standarns include the ability to undefine macros, to
alter the special rr·acro svrrbol, to conditionally compile
der~nctino on whether a mecro hes oeen defined or if the value of
two strinQs are eouelr to divert the innut stre~m, to convert
che~acter strings t~ nu~bers and perform arith~mtic on them or
use them in comparisons, etc. Closely related are t~e strina
!iel"ltlina bu;lt•ir· fuctfons, suc:h es index, sunstr, ver;fy, etc.
lrd'd I e i t 1v o u l cl he c1 e s i r ab 1 e t o he v e as mu c h pow e r as poss i b 1 e ,
whet remei~s a vseful work;ng set?

10. ·.•hat flow C('lntrol mechanisms are rnost desired?

lf•then•else and ~o-wn;1~ locps see~ to be eom~on and useful
tools, AS well as tne ~h1lity to set labels in macro definitions,
Thi~ last fP~ture 1s missinQ in Falksen's macro And might be
four>tl to he useful. The macro time label feature is distinct
fron· the penerAti"n of labels. The elm ahility to generate
urdrnJP. labels and refer to them within a Macro rnay be a more
useful feature of an assemb I y 1 anquage macro Processor ti'!an a
high•level languaqe macr~ processor.

11. ·H1et form,,+ error" recovery seems most desirable?

Simoly having the
simrle syntax error
error t-y sever;ty
compatible with PL/I

~aero processor halt upon the discovery of a
see~s a bit severe. A classification of

lP.vel \o!CHlld appear to be more reasonable end
syntax ~rrnrs, ~owever, macro processing

Page b.

involves both "define•tim~" and "invoke•time" features, so th~t
en illegal mecro nefinition need not suspen~ processing, but a
macro cell to an unknown macro or use of an undefined variable
can result ~n either only ~inor errors or ccmplete
non•comprehension, aepending upon circumstances. ~ qond
approach, 1t seelT's to me, is thAt of the PL/I comoiler wt'iic:h will
continue processinQ as long as possible. This now occurs with
faulty %incluae's, ~lthough it freouently leads to an avalanc~~
of errors and ass~ciateo messages.

12. ~hat are th~ verfor~ance considerations?

Clearly the macro nrocessor should not drastically increasr
coM~ile time, especially for those who make no use of th~
facilities. If the macro trigger c~aracter is used, es for
%include, %sk;p, ana %paqe1 the inclusion of macro fac;1;t1es
can be nol"'le so th~t only those requiring them need oay tne orice.
Those who make mooerate use of these facilities woUld not ~ant to
see an increase in com.oil ;ng ti~e of ~ore than, say 10 to 1~
percent. lll"'I thP. other handr those who w;sh to use the macrn
fac;lHv to substantially extend Pl/I in private directions might
be eneouraqen to USP a stand•el~ne macro pre-processor.

so~E ~ACPO PhOCESSORS WOMlH EXA~l~ING

~hat follows ;s a br;ef summary of the facilit;es of commonlv
used ~aero processors w;th a ecimment on t~eir ap~rcPriaten~ss, as
I see it. For those who wish further infor~ation, a brief tabl~
appears in the ar:pendh· anrl a referel"ce, tJhere possible, is givf>n
to ~ore compreher.sive documentet;on.

1. alm (MPM•ShG):

Alm allows nesteo ~aero definition and invocation of ·~aero~
within definitiv~s. The imbedded mecrn need not be defined et
the tim~ ~f outer ~eero definition, but must be at the tf~e of
the invocation of the outer mecro. This ;s characteristic of
manY macro vrocessor$. Definitions are triggered by the keyword
"~aero" hut invocation requires no soecial character. There are
facilitias for u,.,;oue label gP.neration an1~ referencer Heretion
by list, selection oroup control, e function yielding the number
of arauments ~asseri to the macro, and pseudo-ops for cond;tional
essemDlY oepenoing on whethP.r an argument is en integer• if two
a r Q u rr, e n t s a r e e t'.l lJ a 1 , ~ t c • A 1 n a 1 s o a 1 1 o w s c o n d i t i o n a 1 as s e m b 1 v
on argumP.nts passed at com11and leV~l. There are no macro time
variebl~~. ~hile there se~m to b@ a weelth of Qood ideas in elm
macro facilities, thei~ fl~vour is nnt that of a high•lev~l
lanquag~ and the alm ~aero Structure mav "ot be appr~Priate fvr
the in-house use ~entioned above.

Pape 7.

Multics lechnical Bullet;n

2. Falksen'a mafro (>udo>~>jaf>nrog>macro.infn,sys Mor ~TB 345):

~ested macro ·~•finition has Just been added. The inclu•ion of
some other featvrP.sr such as the abilitv to query command·l;ne
arguments ~nd.t~sts to determine the existence of the definition
of macros with ~iven names would see~ to make this an attractive
chnice. First in~ications are th~t the integretion into the
le>eing ~-'hase of't:ne PL/l compiler should not pr,,ve too dificult.
Extensive use is mace of the tr1q9er symbol and the white-space
~onv~ntions ~r~ n~t rL/I•like and may rftquire some restructuring,
but it is e~sv to use, allows nested invocations, is recursive,
orovioes' useful c~ntrol structures, Provides easy re~dability,
and has built-in oerugging features. It does, h~wever, prohibit
the use of eP.rtein reserved words as macro variables.

3. I~~ PL/I preprocessor CGC20•0009•Q or SC2D•lb09°1):

Thi~ pre~roeessor requires A separate pa~s before rompilation in
wtd<ti preprocessor statements are converted befnre the compiler,
per se, attecks th~ rrogra~. These ean be ind~pPndant pheses,
an o l a 'll r· o t e e rt a i n o f t ri e e f feet s on 1 i st i n gs • T here e xi st
cha~aet~r and fiXP.d decimal var;ables whieh require exp1ic1t
declaration, as well as preprocessor functions, which may have
their owr local v~riablrs, Flow of control is achieved bY XDO
groups ,,,,w %lf ••• ~THEi\•••%fLSf as well as XGOTU's. This i'l'Plies
Preproc~ssor labels. ArQuments are bY oosition as well as
keyword. Such preprocessor functions look verv much like PLiI
function procedures. Output of this prorluct fs not pretty.
There are no expliet provisions made for com~and line ergument
handlinq. ~esteo invocations arP. per~itted, but I am not certain
about n~sted definitions. built•in preprocessor functions
include substr, lenqt~, index, a uniQue deci~al num~er aenerator,
and a tPst indica~ing if Para~eters nave exolicitlv been set on
fnvocatio~. A re.f!sonable restriction requires tnat e procedure
definitiOt"I can not span included files.

~.UNIX ~3,~4,and ~b lUhlX Progra~mers Manual, &e11 Labs):

There are ~rovisinns to oefine ano undefine macros, but tne
rescanninq ot def;nitions at define time often Yields unintended
re.suits. IJseful fP.atures include the diversion oof input streams,
i n c 1 u de f ; l es , e h fl ng e o f o u o t e s y m ti o 1 , et c • I n e re me n t, e v a 1 u ate 1

length, -substr, and index are the primarY built•ins. Nested
definition is impossible but nested invocation is permitted as
well as invocation im~edoed in definition. No special trigger
symbol is used for invocation, however dP.finition reouires •
triqqer (in som~ vers;ons). T~ere ;s both a free standin9 form
as ~~11 ~s facilities bu~lt into the C comPiler. Curiously• the
co~Piler re~uires that the first character to be the trigger
character tf the macro processor is to he turned on. The ~ecro
Processor is easy to use for simple tasks and command line
erpument h6nrllinq can easilv be implemented, but the leek of a

Page 8.

~u 1 t i c s T e c Ii n ; c a 1 E~ u 1 1 e t ; n

~ trigger symhol is often founa contusing and as the C eomniler
~oes nnt ~ronuce a listing, the use of a symbolic debugger
virtuel1v forces a stand•alone pass to he made. The automet1e
rescanning of Al 1 ~aero output for further macro invocation or
defin~tion may credte oroblems for the sharing of macro
librarf Pa. There is little in the ~av of flow eontrol end
soohf sticatea use of the system is difficult.

s. macro facilites in ~ultics editors (emacs, teco, oedx etc.):

These need no com~ent here.

o. lbM 3o0/.37u ~·aero ttssefT1blers (GC28•bS14 and GC33•4010):

Versions upto a"d 1nclu~ing level f Provided keyword arguments
default arouments, li$t arouments1 and lah~l rlata types, but not
,.,ested macro nefinition. Unlike some niacro orocessors, user
defineo names for ~arJmeters are specified, so that the tedious
use of R.1, ~-2• ~~tc .. fnr positional paramt<!trs is avoided. Tl'lere
are both qlohal and iocal varia~les of three types: binary,
character, and •rit1metic. Pseuao•oos for type of argument,
1 en gt h o f a r q \J"' e l"I t , n ', "' he r of a r q urn en t s i n a 1 i s t , et c • a re
available. There are recursive macro calls. However, macro
definitions must he either in a macro library or at the beginning
of the source and tne orientation is very much line•based,
Control flow is mostly achieved by if's and goto's. Later
versi~ns mav nave more ~owerfvl features ~ith which I am not
famili~r. ~hile so~e nf the features, such as keyword parameters
with defaults, ar~ Quite useful, the lack of structur~d date
tyoes ~nd flow control supgest against this general style of
macro ~rocessor.

7. il"IDAS:

This ts a co~erful PGP•lO assembl~r developed at t~e MIT AI Lab.
U n 1i ke o t h e r rr a c r o o r o c es so r s , ri a r a me t e ,. pas s i n Q i s v e r v w e 1 1
specified; there ere 6 kinas of argument syntax as well as bind
c1asses to deter~tne ~hat happens to parameters eveluettng to the
null string. ~~sted definition end invocation are available as
well as various loo~ controls. Conditional assembly predicated
on the value of arquments or definition of macros is ~lso
support~d. There are no mAcro ti~e variables. While a number of
~O~ features Are present, it is unclear that manY of then are
reellv ~ecesserv. I have a co~y of the documentation for t~ose

interesteo.

8• The U~IVAC Prooosal:

There is a docume.,t circulating which proposes a rather extensive
macro language c-.f sv.,tax similar to that of PL/I. It appears to
be enormously pon~rfui and 1T18y rear examination if such PO!!iler is
consider~d aesir~hle. The proposal contai~s a gbod introduction

~l.

~· '; . ,,

to ,.,,aero .~ "OCe!;sing a~.; well as a referel"ce QUide to t:he proposed
rnacro 1arguag.~,.., tis descrit>ll!(1, it would exist in a ort:·processor
version a• d an h1r-lem~ntetion woulo not be tr; vial• An in-~ouae
vel"'sion 1 as <:'nee consioereci bY G. Chang, but I cer> not find
anythin~ bvt so~e docu~entation descr;binq it. I am the
tftmporarv guar6ian of a·copy of the UNIVAC Proprosel a"d those
intereste•i can borrow it,

(.:

There can oe no c1eer c~oice of which macro processin9 activities
to pursue unless" t'here is a well•defined goal and that reou;res
~n assessment as to ~ho will be the audience fol" this ~aero
Processin~ activity. Hence, some response is reouired before
any serio11s '!"aero Prncessing design cal"! begir..

Please send comments to:

t-;ars"'al 1 ~ resser
Horieywe11 lntorrr.at ion Systems
57~ Tech square
c~m~ridge, ~ass. 02139

llr call:

(617) 492-9320
h\11\1 201 .. 9320

In aodition to ccm~ents sent through mail ~r messages, stop in
for a chat so~etime or recom~end other m8cro nroeessors or
facilities thouoht tone useful• Sometime i~ the next few weeks
those i~tereste~ cari gather for a des;gn nrevfew Csiel where a
coriAensvs eAn be f~r9ed,

APPft'I{) IX

elm

1. Variables: ~one.
2. Parameters: Positional end numbere~, but meY consist of lists.
3. Pseudo-ops a~d hut It-ins: Unique character string generation
and reference, Arnu~ent count, lenQth Of an arquments Cin chars),
nu1T1ber of elements in an ;te,.ation set, etc.
u. Trigoering: UAfinitions by ~eyword "maern" and terminated by
"&ena." Invocations and pseudo•oPs r~quire no special tri9ger.
Control f\Jnctions bepin wHn &.
s. Flow control; Iteration by lists, either of the arguments, en
ergu~ent which is itself a list, by a constructed list, or by
selection of list elements. Conditional execution based upon the
comparison of two strings, if a string represents an inte~er, or
if a string has been ~asserl as a control ar9ument.
6. Com~and 1i"e interface: Strings can he set as command
arQume"ts and conditional Processinp can occur on these strings.
7. ~ebuaping/listinq: No deouqaing tools ~er se. FxPansions
Plaeerl in listing without lin~ nu~bers. A stackable on/off
toggle for listin~.
e. ~escanning: ~one.
9. Nesting: Meste~ definHion, invocati(ln and imbedded ir'l\IOcetion
within definition.

Fa 1 k sen ' s n1 a c r o

1. Varia~l~s: c~~racter string variables of three scopes, like
external sta~ie, internal static, and automatic. Scalars,
arravs, 1; fo, fi fc:u anrl 1 ists, ; ef!• sets.
2. Para~eters: Positional and "umhererl. Can be l;sts, hut list
hendlino must be explicitly handled bY Programmer.
3. Psuedo ops and built•ins: Protected strings, parameter count,
active functio"s' su~strr lenuth, quotinQ, Unquotinq, white space
control, and li~rary reference.
4. lr1qqertng: All macro cn"st,.ucts preceeded by &. Some
reserved words AS wel 1.
5, F'low coritrol: lt-then-else .. fi and do .. wnne·od. Returri
stateMent for Premature exit. No ia~els or goto's.
&. Com~and line interface: AbilitY to send arguments to a macro
throuqh the co~mand line. Also a subroutine interface in th•
usu a 1 .• , 1_• 1 t \ c i; f Ash ; n n •
1. Liet-ugc;inq/listin'1: Internal debugq;"g aid, thouqh outr'!Ut is a
oit obscure. ~11 mAcro phrases replaceed by expansions' nn
11st;ng re-r se.
8. Rescf\N';nr.::i: r·ot unless exp11cHly reouested bY a oseudo•op.
q• Nest in~: M~cently installed mu1 tt-1eve1 nest~d definition.
Invocations permitted within definitions and invocations.

,-._ IbM Pl./ l t'reprocessor

·_.;::;

~ultics Technical Bullet;n

.
'

1. var;af•les: 'L·loha1
Chari varYinq). ,_

local of type fixed decimal and

2. •aralfl•~ters; Fosqior.al ana soecified by na,,e. Of type fixed
deci 1al O'"' chAr.
3. P1eurlo•oos ~~d huilt~1ns: Deactivation and activation of
vari~hles, substr, counter function, parmsetCto indicate if a
Pa re;neter has bpen set).
4. Trioqering:'; 1:se of % as a trigcier for virtually ell
prePrOcPssor state~entsr but variable and procedure cells do not
rP.ouire ~special character.
s. Flow control: .>O gr,,ups and l;OTO"s (Preprocessor labels bP.qin
w i t h %) • IF - T ~f ~ -ELSE cont r o 1 as 1o1 ~ 1 1 •
b. Comman~ line i~terface: None(1)
7. •1ebuuninq/1isting: No elwliscit debuggirq aids. No listing
cont,..ols on the preprocessor, as the preprocessor phase nroduces
source fnr compiler rhase. Preprocessor c~n be used without
compiler.
6 • t< e s c a n n i no : fl l 1
~ xn l i c i t 1 v pre v er' t e C1 •
usef 1ite,..a11y.

outout of preprocessor rescanned unless
%aeactiv~te used to al lo- a variable to be

9. NeStinq: No nested definition, but
wit~in invocatinns and definitions.

1. lariables: ~one.
2. f'ararn@ters: ~·ositional and numbered.

invocations per~itted

3. PsPut:'lo•OPS end bui 1 t•ins: Change of ouote svmbol, undefine Ca
macro), con~itional replace~ent predicated ~oon eque1 ity of
Strings or existence. of macro with a Prescribed name, and
diversion of input strearn. Increment' inde",siibstr 1 and length.
4. f riqoering: Varies witii version, but usually no trigger
character <for invocation, hut pseudo•ons "'·av rec.u;re one. Dollar
sig~ used as the ~arameter number tri9ger.
S, Flow control: r.;<rirriitive, see 3, above.
6. Co~m~nd line interface: ~othing exP1icf t, but conaitional
comr i1ations nro~wceo by a1terin~ thP. search rules (for include
f;l••s).
1. Oebu~qin~/listing:
everythinq exoand~d and
compiler rrovides n"
obscure.

No debugging aids. In stand alone form,
1 isted (by printing the output file), C
listing, so often error message become

8 • 1< es can n i n q ~ E: v e r .,, t h i n q re s c an n e d u n 1 es s exp l 1 e ; t l y pre v e n t e d •
Definitions rescanned at cefine time.
q• ~esting; ~o nested definition, but invocations with
definitions ano nested invocatinn Permitted.

IR~ 3b0/37C Assembler

1. Variables: Hoth clonal and local in scope, of three types,
erithfT'etic, binarv, an1 ci'laractP.r.
2. Pera~eters: Hoth keyword and positional, in any nrder•

Page 12.

"•ultics 1echn;c,:1l !:iu11etil'i

defaults for ~ey~oro parameters. All parameters na1T1ed.
Arguments can h~ lists and subscript ~otation to access list
elements, use of !i.sysl ist oseudo•op to eiccess entire set nf
positional argument~ as a list,
3, Pseurin•ops and built•ins: Gene~ation of consecutive 4 digit
numbers, substr, and functions to deter~ine data tYPe, length (in
bytes) , lenqth (ii"! characters) or argt.J1T1ents and variables• etc,
4, Triqgerir1g: retinitions trig<?.,red by keyword "MACfW",
Invocation reou;res no tr;gqer1 but som~ pseudo•ops do.
5, Flow contrnl: ~ostlv by means of if end aoto1 but a &ACTR
pseu<.io•op allo"-s ~flRTh'.41,1 like do lo"ris (increment down to zero
from an initallv user set number),
6, Command line interface: A r~ad orlly pseudo var &SVSPtiRM
results in a strino set in a JCL statement. Can be used in
conditional state~e"ts.
1. Oehuoging/listinq~ OebuQging by explicit coae onlv. Listing
control to allo111 allow/prevent Hstinq of defintions as well as
of expoansions.
8, Resc111rinino; r~orie.
9, Nestinq: ~o nestP~ definition. Invocations allowed within
definitions, bu~ not ~ithin invocations.

~JOAS

t. Variables: "nne,
v a r ; a t' 1 e s •

but use can made of assemhly time

2. PAr~~eters: ~eyword and ~ositional, soecified by na~e.
Defaults for kevwor11s. Special handling for unspeeHied ~nd
nul lspecifiec parameters available, ~ealth of arqu~ent types,
"wholeline", "nalane~d"i", "evaluated", etc,
3, Pseudo•ops and ~uilt•ins: Lots of assembler pseudo•ons and
conditional asse~~ly oseudo•ors.
~. TriQQPrino: Pefinition triggered by keyword. 1nv..,cation
r P. o u i r e n n 1 Y n R rn e • P s e ~1 do •op s o f t en be ~d n w; th a 11 • " •

S, Flow c~ntr~l: Mostly by means of REPEAT end IRP loops,
A. t'I ; 1 ; t y t o b re a a.. f r r- 111 ~ 1 o op as we 1 1 as a q o t o •
b. Corr•manfi Hne interface: .TTYtt.AC pseudo•op defines a nan'leless
macro -hich reaos arquMents frnm the teletype,
7. Dehwq~::dr.q/liSting: i\lo e>cplieit dehugoinq aids. Poeume"'t
unclear on list;na.
8, Rescanning: ~ot don~.
9. Nest;nq: Full nesting facilitie9,

IJ~lVAC.

1. Variehles: Gf tyne decimal fixea and char (varying). Arravs
of both tvpes. Associat;velY a~dresserl arrays.
2. Parameters: Positional, but refP.rerice in rnacro definitions is
not lik~ that of procedures, A macro Picture Ctemo1Ate) ,9
constructed, e,0..

<'SUB' EXFRlSSJ0~ 'FROM' REffRENCE 'J'>
will match strinq like SUH F~En + S-M -*2 FROM HAROLD (23);, ln

Page 13.

Multics Tecnn;cal Ru11et1n

. l l' .,.
, ..

further maero~o~structs in the macro body FRED+ SAM **2 ~111 be
sub st; t1 erl fen• t:>.Pf<t SS IUN are1 H11RiJLO (23) for REFEqENCE.
3. Pseu, o•oPs 'an.~· built•;ns; Language features used in temnlate
metenin< incfudin~ Cf...IMACTU~, IDE.NTIFIER, EXPRE.SSlUN, etc.
Also inrex, l~nqth, substr1 etc• Meta function to ~lter and
extend the ~aero lanauaqe,
a. Triggeri~gi ~aero aefini ti on heed the text to be expanded,
They trigger ~v kPY~ora. No trigger character, ~aero of two
kinds: trigger an~ syntax, forMer are triggered by match of of a
macro Picture in thP. expandable text, Letter are only recoonized
within other ·!l'acros, never fror1· the text. Limitation Of triqger
macros is that.:tt-ey must be~·in ~·dth a literal.
S, Flow control i ~ithin tripger macros there are DO loops Cvar =
exp to exp bY exr) 1 goto~s a"d if•then•el~e as well as procedure
cal ls. Procedures but not macros, have PL/I•like syntax,
6. Command line interface: ~one describea.
7, Debugqinq/listing: Check and warn statements and statement
Pr~fixes. Form~r useo dynamicallY to print debug~ing info on
possible chanqe of value of variable, execution Of a statement,
macro or Procedure. Latter usPd whenever macro is invoked,
Partially, but incompletely matched. Former meant oniv at debug
time, latter as error messapes for imoroP~r usaoe and are meant
to h~ P~rmanent. As this is meant as a preprocessor, no expliet
listi"g control, rattier printino of output file.
B. Rescanning: by defeultr during the processing of a trigqer
macro there is no rescanning. Hy default, after the processing
of the ~aero, the returned string is rescanned. Both defaults
can be overrid~en bv tne RElRY and PROTECT options respect;vely.
9, Nesting: A~p~r~ntly "ot in definitions. Neaterl invocation
possihle, but t~voceti~n of trigger macros not permitted in the
definition of otn~r trigger macros.

