
. 
-· -- ·- --- --- - ·-·-- ·---··· 

·-· 

Multics Technical Bulletin MTB-437 

To: Distribution 

From: Monte Davidoff 

Date: 6 February 1980 

Subject: Automatic formatting of PL/I programs 

INTRODUCTION 

This MTB describes a command called format pl1 which 
automatically formats PL/I programs. Each user may provide 
formatting controls to tailor the formatting according to his 
personal style. Control comments may be inserted in a program 
that indicate what formatting style should be used. This allows 
the style of a program's author to be preserved even if 
developers with different styles occasionally modify the program. 

PURPOSE 

Using a program to format a PL/I program automatically is more 
productive than doing it by hand. A program can do the job much 
faster and more accurately. Automatic formatting visually 
displays the nesting of control structures in the program as the 
compiler will interpret them. Control structure nesting errors, 
such as dangling else problems, become very easy to spot. Some 
common programming errors, such as unbalanced quotes, unbalanced 
parentheses and mismatched end statements, are detected using 
fewer ·esources than a compilation would take. 

The indent command is not flexible. No one style is adequate for 
all the different programmer preferences and ways of writing 
PL/I. If one prefers some aspects of indent but not others, 
there is no way to turn off the undesirable features. The indent 
command does not understand very much about PL/I. This causes 
many bugs and deficiencies in indent. There are no plans to fix 
any of these. The heavy use of PL/I on Multics justifies a more 
intelligent formatting program. 

Therefore, a new formatting program was written. The differences 
between format pl1, in style4, and the indent command are minor, 
for the most part, and all of the known differences are felt to 
be bugs in indent. After format pl1 has been installed for a 
release or two, the indent command-should be made obsolete. 

Multics project internal working documentation. Not to be 
reproduced or distributed outside the Multics project. 

Page 1 



Multics Technical Bulletin MTB-437 

If a programmer inherits a subsystem which he considers 
l.dreadable, he will have the option of quickly and mechanically 
reformatting the entire subsystem into a style he finds more 
productive. If someone in the field such as a SiteSA changes a 
program, he will be able to figure out what the style is and 
mechanically preserve the style. 

MCR 3503, which was approved on 25 October 1978, addressed the 
need for formatting standards for installed PL/I programs. Many 
of the reasons for a formatting standard are the same as those 
stated above for using an automatic formatting program. Much 
time has been spent in the past trying to arrive at a single 
formatting style acceptable to most programmers. All attempts to 
arrive at a single standard style have failed. The complexity 
and wide variety of formatting controls available in format pl1 
indicates just how diverse programmers' styles are. The stanaard 
proposed by MCR 3503 requires an installed formatting command 
that allows for a variety of styles. By default, the command 
would not make any irreversible changes. The default style could 
be changed by command line arguments or formatting control 
comments in the source. The proposed standard is to format all 
installed PL/I source by the installed standard formatting 
co .. ,tl1und. Formatting control comments in the source would specify 
how the program's style differed from the the default action of 
the command. The auditor would i1sure that the style chosen by 
the author was readable. 

The proposed format pl1 command is intended to become the 
installed standard ?ormatting command. An MCR to install 
format pl1 will not automatically make it the installed standard 
formatting command. A separate MCR must be approved to make it 
the standard. No program can implement the style of any 
programmer perfectly. PL/I is too complicated a language. 
Sometimes the same code needs to be formatted differently for 
different purposes. The format pl1 command does not even 
implement exactly the style of iti author. In order to get the 
benefit of an automatic formatting program and the benefit of a 
formatting standard, we must agree on a reasonable, small range 
of styles and exercise good judgement to avoid styles that most 
would find difficult to read. 

One purpose of this MTB is to find out how close format_pl1 is to 
satisfying the needs of Multics developers. Disagreements will 
be settled by consensus at a format_pl1 design review. Speak up 
if format pl1 is incompatible with an important part of your 
style. Actually, any standard imposed by format_pl1 is not very 
tight. It is possible to specify a style that does not change 
the format of a program at all. One programmer has said this 
safety valve should be closed. I prefer to leave in this option 
and let auditors enforce standards, rather than programs. 

Page 2 



Multics Technical Bulletin MTB-437 

Once format pl1 is approved as the standard formatting command, 
it should b~ phased in gradually. A conservative approach should 
be used to decrease the chance of accidentally making 
irreversible changes. It would not be wise to immediately format 
all installed sources with any style. Programs should be 
converted from their present hand-formatted style or indent's 
style as they are opened and changed, at the discretion of the 
programmers and the auditors. Each programmer can then go at his 
own pace, converting to format pl1 on a program by program basis 
or a whole subsystem at time. 

HISTORY 

The indent command was written by Don Widrig and Stan Dunten in 
MAD on CTSS in 1966. Its formatting style dates back to its 
authors' understanding of PL/I at that time. Its emphasis on 
speed reflects the constraints of its development environment. 
It was converted to PL/I for Multics in June 1969 by Tom Van 
Vleck. 

Complete disgust with the style of the indent command motivated 
format pl1. Paul Green started writing the first version in 
November 1977. From the start, one goal of format pl1 was to 
understand the syntax of PL/I better than indent. -This means 
format pl1 will not get confused by constructs that confuse the 
indent-command. It also means format_pl1 can do more processing 
since it has the knowledge. 

The author started working on the command in July 1978. The 
style in which the command formatted programs gradually improved. 
A staff meeting talk was given by the author at CISL in September 
1978 on the new formatting command. The need fo~ the command to 
suppor: a variety of styles was the main result of the somewhat 
heated discussion at the meeting. Soon afterwards, Tom Casey 
submitted MCR 3503 to ensure that a new command, implementing an 
incompatible formatting style, would not become a new de facto 
standard. 

Since that time, work on format pl1 has centered around producing 
a specification of what the command should do and implementing 
facilities to allow multiple styles. Why was format pl1 
implemented first, before the MTB and Design Review, at variince 
with the usual procedures of the Multics group? The problem of 
formatting PL/I programs is too complicated and emotional an 
issue to trust to a written specification. PL/I is a very 
complicated language. Nearly everyone has exceptions to their 
own formatting guidelines. The evolution of the current 
format pl1 command can be described as recognizing more and more 
speciaT cases that have to be treated differently. To have a 
specification and ask if this is what you want would not have 
worked. There are just too many special cases. The only way to 

Page 3 



Multics Technical Bulletin MTB-437 

ap,roach the problem is to ask people what they don't like. I 
want people to know what they are getting. It's better to talk 
about specifics, rather than "have a style like indent." 

THE PHILOSOPHY BEHIND FORMAT PL/I 

By default, format pl1 will not make any drastic changes in a 
program. For example, if a program is formatted with indent, 
then formatted by format pl1 using its default style or the style 
similar to indent, and then reformatted with indent, the result 
will be very close to the original. The format_pl1 command can 
make drastic changes in the source if it is asked to. It can 
delete intrastatement vertical white space to ensure as much of a 
statement will fit on a line as possible, and it can insert 
newlines into the source if a statement is too long for a line or 
if there is more than one statement on a line. Its algorithm for 
inserting newlines produces good results most of the time. These 
formatting modes can save a lot of time if you like what they do. 
If only a few places in the program look unacceptable when 
:ormat pl1 deletes and inserts newlines, you can insert control 
c:mmenTs in those places to prevent format pl1 from inserting and 
de~ 0 ting newlines in those places. 

As mentioned earlier, control comments in the program can specify 
the style to format the program. Styles specified in the program 
always override those specified on the command line. This very 
conservative approach was taken to ensure that a program's style 
will not be accidentally changed. This prevents format pl1 from 
doing what the author of a program may consider to be irreparable 
damage. If you really want to change its style, you have to edit 
the program. 

MCR 3503 influenced the development of format pl1. The control 
comment mechanism, a default style which mak~s no irreversible 
changes and the interaction of styles specified on the command 
line and specified in the program are consistent with the 
philosophy of MCR 3503. The issues raised by MCR 3503 
contributed to the conservative approach taken by forma~_pl1. 

The predefined styles in format pl1 are designated by numbers. 
There is no way to pick a mnemonic identifier to describe a style 
other than something like the name of the person whose style it 
is. There is no "style indent" because the format pl1 style 
closest to indent, style4, is not exactly like the indent 
command. Most programmers consider the minor differences to be 
bug fixes. 

Page 4 



Multics Technical Bulletin MTB-437 

USING FORMAT PL/I 

I urge everyone to try format pl1 using their favorite style. 
The current version of the command is in >udd>m>mnd>lib on all 
three development sites. Info segments describing the current 
version are in >udd>m>mnd>info. Also try the command using the 
delnl,insnl modes. You may find that the time it will save 
editing will be worth it. 

Since there is so much disagreement about how a program should be 
formatted, the default style will please very few people. Since 
control comments in the program override the default style and 
the style specified on the command line, the choice of a default 
is not important. As a result, format pl1 has been designed to 
be used with abbrev. Everyone should have an abbrev similar to: 

.ab FP format_pl 1 -record style -modes ~OUR STYLE 

or: 

.ab FP format_pl1 -version -record_style -modes YOUR_STYLE 

If you have been using the indent command and like its style, 
just substitute "style4" for YOUR STYLE. 

The -record style control argument tells format pl1 to insert a 
style control comment in the program indicating how to format the 
program if the program does not already contain such a control 
comment. Presumably, the program does not contain a style 
control comment because it was just typed in or because it 
predates format pl1. This control comment is inserted after the 
initial comments in the program and before the first token in the 
progr~m so it will not interfere with copyright comments~ The 
modes 3tring in the control comment specifies every mode so that 
changes to the default style or different styles specified on the 
command line won't have any effect. The modes string uses the 
closest predefined style so a minimum number of modes are 
specified. 

If the -version control argument is specified, format_pl1 will 
identify itself after it has checked its arguments. This is done 
in a manner similar to other translators such as PL/I. 

If you do not want to inadvertently change the style of a program 
without a style control comment, then your abbrev should include 
the -require style comment control argument. This will cause an 
error message to-be printed if the program does not already 
contain a style control comment. If only one· pathname was 
specified on the command line, the source will not be 
overwritten. You can then decide if you really want to format 
the program with format pl1, and if so, specify the 
-no_require_style_comment control argument. 

Page 5 



Multics Technical Bulletin MTB-1~ 37 

The format_pl 1 command has a few ft=atures designed to make common 
programming mistakes easier to find and correct. Parentheses are 
checked to be sure that they balance. 1f you find you have 
omitted a quote, the -check_strings control argument can help 
find the character string containing half of your program. If a 
labeled end statement closes more than one block or group, 
format_pl1 will warn you. It will tell you each block or group 
that is closed by the labeled end statement, except of course, 
the one it should close. The pres8nce of this warning means that 
labeled end statements should be used whenever possible. If you 
leave out an end statement, you will get a message saying which 
block or group is missing an e~d statement, rather than the 
message from PL/I saying you left out one end statement in your 
17,000 line program. 

The MPM documentation for format pl1 indicates that the severity 
active function can be used with- the "format pl1" keyword. The 
severity active function must be changed -to recognize this 
keyword before it will work as documented below. 

MPM DOCUMENTATION 

Name: format_pl1, fp 

Syntax: fp in_path {out_path} {-control_args} 

Function: formats a PL/I, create data segment or 
reduction compiler source segment to make -it more readable. 
Alternate- methods of formatting particular language constructs 
are selected by means of modes; several popular styles 
(consisting of groups of modes) are defined. Modes and styles 
are specified on the command line and in comments in the source 
segment. 

Arguments: 
in path 

-pathname of source segment. Suffixes for PL/I, 
create data segment and the reduction_compiler are recognized. 
If in-path- does not have a recognized suffix, format pl1 
attempts to use in_path.pl1 or in_path.cds, in that order. 

out path 
pathname of the formatted source segment. The suffix of 
in path is assumed if not given. If omitted and there were no 
errors, in path is JVerwritten. If omitted and there were 
errors, a formatted copy is left in the process directory. 

Page 6 



·-

Multics Technical Bull=tin 

Control arguments: 
-version, -ver 

prints the version of format_pl1. 
-no version, -nver 

doesn't print the version of format_pl1. (Default) 
-modes STR 

MTB-437 

prefixes modes found in the program by modes string STR. See 
the "Prevailing style" section below. 

-record style, -recsyl 
puts-a control comment in the source specifying the prevailing 
style if the source does not already have a prevailing style 
control comment. The comment is placed immediately before the 
first token of the program so it doesn't interfere with 
copyright notices. 

-no record style, -nrecsyl 
~on't ~ut a control comment in the. source specifying the 
prevailing style. (Default) 

-check strings, -ckstr 
pri~t a warning if a character-string constant contains 
vertical white space. This control argument is useful after 
receiving an error message indicating a quote has been omitted 
from a character-string constant. 

-no check strings, -nckstr 
don't print a warning if a character-string constant contains 
vertical white space. (Default) 

-require style comment, ~reqsylcom 
print-an error message if the source does not already contain 
a prevailing style control comment. This is useful if one is 
concerned with accidentally destroying the style of a 
hand-formatted program. 

-r~ require style comment, -nreqsylcom 
format the source even if it does not already contain a 
prevailing style control comment. (Default) 

Modes string: 
A modes string changes the style format pl1 uses to format a 
program. It consists of mode names separated by commas. Many 
modes can be preceded by 11 " 11 to turn the specified mode off. The 
modes string is processed from left to right. Thus, if two or 
more contradictory modes appear within the same modes string, the 
rightmost mode prevails. Modes not specified by the modes string 
are left unchanged. 

Control comments: 
A control comment has the form 11 /* format: STR */" where STR is a 
modes string. Control comments may occur only before the first 
token of the program, between a semicolon and the first token of 
the next statement or after the last semicolon in the program. 

Page 7 



Multics Technical Bulletin MTB-437 

Control comments may not occur in the middle of a statement. 
Optional horizontal white space may precede "format:'' or surround 
STR. Some modes changed by a control comment may not take effect 
immediately. For example, end statements are formatted according 
the modes in effect when the matching do, begin or procedure 
statement was formatted. 

There are two special control comments that are used in if 
statements. If a comment containing "/* case */" or "I* tree *I" 
immediately follows the word "if'' in an if statement, then the 
current style is changed for the duration of that if statement. 
Exactly one space must precede and follow "case" and "tree". See 
the description of the case and tree modes in the "List of if 
statement modes" section below. 

Prevailing style: 
The style in which format pl1 formats a PL/I program is formed 
from a combination of three sources: format_pl1 's default style, 
modes specified on the command line and control comments in the 
program. The first control comment of the program preceding the 
first token of the program is called the prevailing style control 
comment. A program might not have a prevailing style control 
comment. The style specified by the concatenation of the default 
style, the command line modes and the prevailing style control Alli\ 
comment is called the prevailing style. This is the style in 
which most of the program is formatted. 

Note that since a styleN mode specifies the setting of every 
possible mode, if the prevailing style control comment contains a 
styleN mode, the default format pl1 style and the command line 
modes are ignored. If the program does not already have a 
prevailing style control comment, the command line: 

format_pl1 in_path -modes MY_STYLE -record_style 

formats a program in MY_STYLE, and records the style in a 
prevailing style control comment. If the program had a 
prevailing style control comment, the program is formatted in the 
style specified by its prevailing style control comment, and the 
-record style control argument has no effect. The prevailing 
style control comment created as a result of the -record_style 
control argument always begins with a styleN mode. 

Notes on examples: 
The examples show how various program fragments are formatted. 
If a control comment is not given, then style1, the default 
style, is assumed. If a control comment is given, the default is 
used for all unspecified modes. Unless delnl,insnl mode is being 

Page 8 



Multics Technical Bulletin MTB-437 

used, each line of the input source segment contains the same 
tokens as the corresponding line of the example. If delnl,insnl 
mode is being used, then newline characters are inserted and 
deleted as required by the style. 

List of modes: (Modes for various language constructs are listed 
separately.) 
styleN 

specifies formatting style N. See "Styles" section below. 
revert 

changes the formatting style co the prevailing style. This 
mode may not be specified in the -modes control argument's 
modes string or in the prevailing style control comment. Note 
that the on mode is changed to the phase specified in the 
prevailing style. 

off, "on 
leave the source exactly as it is until a control comment 
changes the style to on. When format pl1 is in the off mode, 
block and group entries and exits are-noticed so the program 
following the on mode control comment is formatted correctly. 

on, "off 
start formatting the source again. (Default) 

indN 

llN 

N is the number of columns to indent for each block or group 
indentation level. An independent statement in a then or else 
clause that does not have a condition or label prefix is 
indented a minimum of five columns even if indN is less than 
five. This avoids placing the then clause or else clause on 
the line after the "then" or "else". The five columns are 
measured from the column the "else" would start in if the else 
clause was an independent statement. (Default 5) 
Example: /* format: ind3 */ 

if v = 2 
then 

do; 
x = 12; 
y = 128; 

end; 
else z = 12; 

N is the output line length. (Default 126) 
initlmN 

N is the initial column that statements occuring before the 
first procedure statement should start at. This is most 
useful for include files. (Default 6) 

Declare statements: 
Depending upon delnl and insnl modes, each level one identifier 

Page 9 



Multics Technical Bulletin MTB-437 

that is declared is placed on a line by itself. In indattr mode, 
all attributes are indented to the same column. If a declaration 
list has all the attributes factored, i.e. each declaration 
component in the declaration list consists only of an identifier, 
the declaration list doesn't contain any comments and none of the 
identifiers contain a dollar sign, then the declaration list is 
placed on as few lines as possible instead of placing each 
identifier on a separate line. To put it another way, if the 
parenthesized list contains only identifiers and doesn't contain 
any attributes or comments, the parenthesized list is placed on 
as few lines as possible. 
Example: declare (hbound, index, null) builtin; 

List of declare statement modes: 
indattr 

always indent the attributes so they start in the same column. 
(Default) 

"'indattr 
don't indent the attributes from the identifier being 
declared. 

inddcls 
indent declare statements so they start in the same column any 
other statement would start in. (Default) 

"'inddcls 
always start declare statements in column 1. 

declareindN 
indent N columns after "declare". (Default 8) 

dclindN 
indent N columns after "dcl". (Default 8) 

idindN 
indent N columns after the start of an identifier before 
starting the attributes. Ignored if in "'indattr mode. 
(Default 23) 

struclvl"indN 
indent N columns for each level in a structure. (Default 2) 

List of if statement modes: 
ifthenstmt 

if the if statement meets certain criteria, put the then 
clause on the same line as the "if" if it fits. The criteria 
are: The then clause must be an independent statement and 
cannot be another if statement. The then clause must not have 
a condition or label prefix. If in tree mode, the if 
statement must not have an else clause. If in case mode, the 
if statement must fall into one of the following categories: 
there is no else clause, the else clause consists of an if 
statement, or the if statement under consideration is an else 
clause of another if statement. 
Example: /* format: ifthenstmt */ 

if x > 3 then return; 

Page 10 



Multics Technical Bulletin 

"ifthenstmt 
don't put 
(Default) 
Example: 

ifthendo 

the then 

if x > 3 
then return; 

clause 

MTB-437 

on the same line as the "if". 

if the then clause of an if statement is a noniterative do 
group without a condition or label prefix, then put the "then 
do" on the same line as the "if" if it fits. If the else 
clause of an if statement is a ncniterative do group without a 
condition or label prefix, then put the "else do" on the same 
line if it fits even if indN is less than five. In "delnl 
mode, the "then" or the "else" must already be on the same 
line as the "do". 
Example: I* format: ifthendo,"indnoniterdo */ 

if v = 2 then do; 

"ifthendo 
don't put 
(Default) 
Example: 

ifthen 

x = 8; 
y = 9; 

end; 
else do; 

end; 

x = 9; 
y = 92; 

I* format: ind3,ifthendo,"indnoniterdo 
if v = 2 then do; 

x = 8 ; 
y = 9 ; 

end; 
else do; 

x = 9; 
y = 92; • end; 

the "then do" on the 

I* format: Aindnoniterdo */ 
if v = 2 
then do; 

x = 8; 
y = 9; 

end; 
else do; 

end; 

x = 9; 
y = 92; 

same line 

put the "then" on the same line as the "if". 

Page 11 

*I 

as the "if". 



Multics Technical Bulletin 

Example: 

"i fthen 
line the 
Example: 

I* format: ind3,ifthen */ 
if v = 2 then 

do; 
x = 12; 
y = 128; 

end; 
else 

do; 
x = 128; 
y = 12; 

end; 

"then" up with the "if". 
if v = 2 
then x = 8; 
else x = 9; 

MTB-437 

(Default) 

indnoniterdo 
if a then 
then start 
levels from 
indentation 
(Default) 

or else clause contains a noniterative do group, 
the statements of the do group two indentation 

the column in which the "if" starts. Indent three 
levels instead of two if in indthenelse mode. 

Example: if v = 2 
then do; 

x = 3; 
y = 4· , 

end; 
else do; 

x = 35; 
y = 27; 

end; 
"indnoniterdo 

if a then or else claµse contains a noniterative do group 
without a condition or label prefix, then start the statements 
of the do group one indentation level from the column in which 
the "if" starts. Indent two indentation levels instead of one 
if in indthenelse mode. 
Example: /* format: "indnoniterdo */ 

if v = 2 
then do; 

x = 3; 
y = 4; 

end; 
else do; 

end; 

x = 35; 
y = 27; 

Page 12 



Multics Technical Bulletin MTB-437 

indend 
if a then or else clause contains a noniterative do group 
without a condition or label prefix, then start the end 
statement of the noniterative do group in the same column as 
the statements of the noniterative do group. 
Example: /* format: Aindnoniterdo,indend */ 

"indend 

if v = 2 
then do; 

x = 8; 
y = 9; 
end; 

else do; 
x = 9; 
y = 92; 
end; 

if a then or else clause contains a noniterative do group, 
then start the end statement of the noniterative do group in 
the column that is one indentation level before the column the 
statements of the noniterative do group start in. (Default) 
Example: /* format: Aindnoniterdo */ 

inrthenelse 

if v = 2 
then do; 

end; 
else 

end; 

x = 8; 
9; y = 

do; 
x = 
y = 

9 ; 
92; 

3tart the then and else clauses two indentation levels from 
the column in which the "if" is placed. Place the "else" one 
indentation level from the column in which the "if" is 
started. If in Aifthen mode and the ifthenstmt and ifthendo 
modes do not apply to the if statement, place the "then" in 
the same column as the "else". If in case mode and the if 
statement under consideration is the else clause of another if 
statement, then indent from the column in which the preceding 
"else" is placed instead of the column in which the "if" is 
placed. In case mode, this mode is ignored for the else 
clause if the else clause consists of an if statement or the 
if statement under consideration is an else clause of another 
if statement. 
Example: /* format: indthenelse */ 

if v = 2 
then x = 8; 
else do; 

x = 9; 

Page 13 



Multics Technical Bulletin 

"indthenelse 

call default; 
end; 

I* format: indthenelse */ 
if v = 2 

then x = 8; 
else if v = 3 

then x = 25; 
else call error; 

MTB-437 

start the then and else clauses one indentation level from the 
column in which the "if" is placed. Place the "else" in the 
same column as the "if" is placed. If ih "ifthen mode and the 
ifthenstmt and ifthendo modes do not apply to the if 
statement, place the ''then" in the same column as the "else". 
If in case mode and the if statement under consideration is 
the else clause of another if statement, then indent from the 
column in which the preceding "else" is placed instead of the 
column in which the "if" is placed. (Default) 
Example: if v = 2 

then x = 8; 
else do; 

x = 9; 
call default; 

end; 

if v = 2 
then x = 8; 
else if v = 3 
then x = 25; 
else call error; 

case, "tree 
indents "else if" clauses like a case statement. (Default) 
Ex ample: if char = "a" 

then call char a; 
else if char =-"b" 
then call char b; 
else if char =-"c" 
then call char c; 
else call error; 

I* format: ifthenstmt */. 
if char = "a" then call char a; 
else if char = "b" then call char_b; 
else if char = "c" then call char_c; 
else call error; 

I* Decision tree formatted like a case statement. */ 
if condition 1 
then if condition 2 

Page 14 



Multics Technical Bulletin MTB-437 

then call condition (0); 
else call condition (1); 

else if condition 2 
then call condition (2); 
else call condition (3); 

tree, "case 
indents "else if" clauses like a decision tree. 
Example: if /* tree */ condition 1 

then if condition 2 -
then call condition (0); 
else call condition (1); 

else if condition 2 
then call condition (2); 
else call condition (3); 

I* Case statement formatted like a decision tree. */ 
I* format: tree *I 
if char = "a" 
then call char a; 
else if char =-"b" 

then call char b; 
else if char =-"c" 

then call char_c; 
else call error; 

Horizontal white space: 
All horizontal white space, except within character-string 
constants and comments, is removed from the program. Spaces are 
inserted before left parentheses, after commas, around operators 
and in other places to improve readability. Where possible, 
horizontal tabs are used to conserve space in the output segment. 

Statements continued onto another line are indented indN from the 
current left margin. The left margin at which a statement is 
indented is increased by indN for every nested begin block, group 
and then or else clause. Procedure and entry statements are 
always placed in column indN+1. The left margin before a 
procedure statement is saved; it is restored after the 
procedure's end statement. The left margin after a procedure 
statement is reset to 2*indN. End statements are started in the 
same column as the statement which began the block or group, 
except as required by indend mode. Condition and label prefixes 
are placed on lines by themselves, except possibly in "insnl 
mode. 

Vertical 
Vertical 
comments 
into two 

white space: 
white space within character-string constants and 

is never changed. Other vertical white space is divided 
categories: i~trastatement and interstatement vertical 

Page 15 



·Multics Technical Bulletin MTB-437 

white space. In on mode, vertical tabs and newlines before 
newpages are removed, newlines before vertical tabs are removed, 
and multiple newpages are reduced to one. A newline is inserted 
before and after a sequence of vertical tabs and newpages if 
there is not already one there. Interstatement vertical white 
space is never changed except for the above canonicalizations. 
Intrastatement vertical white space is also canonicalized as 
above and processed depending upon delnl and insnl modes. 

List of vertical white space modes: 
delnl 

deletes all existing intrastatement vertical white space. 
Adelnl 

leaves existing intrastatement vertical white space in the 
program. (Default) 

insnl 
insert newlines in the program if necessary. Newlines are 
inserted when statements are too long to fit on a line. 
Various heuristics are used to determine where newlines are 
inserted. The heuristics use the statement type and the 
precedence of the tokens in the statement to determine where 
to insert newlines. The driving force of format pl1 is what 
column statements or other language constructs should start 
in. Newlines are inserted to start a statement, subset of a 
statement or a comment in a particular column. 

Ainsnl 
don't insert newlines into the program. (Default) 

Comments: 
Comments are classified by where they occur within a PL/I program 
and where they are placed in the output segment. They are 

.divided into three categories: intrastatement comments, indented 
comments and column one comments. Intrastatement comments occur 
between the first token of a statement and the semicolon ending 
the statement. They are placed according to linecom mode. 
Comments that follow a semicolon and are separated by at most one 
newline character are considered indented comments. They are 
placed in column comcolN. All other comments are column one 
comments. They are started in column one. All comments before 
the first token of the program, all comments following a blank 
line and all comments following a column one comment are column 
one comments. Placing a comment in column N means that the "!*" 
starts in column N. 

In certain special cases, intrastatement comments are treated as 
indented comments and placed in column comcolN. These cases are: 
comments following a comma, comments preceding the right 
parenthesis of a declaration component, comments following the 
colon in a condition or label prefix and in if statements that 

Page 16 



• 

Multics Technical Bulletin MTB-437 

the ifthenstmt or ifthendo modes do not apply 
following the "then" in ifthen mode and comments 
"then" in "ifthen mode. 

to, comments 
preceding the 

List of comment modes: 
comcolN 

N is the column comments are placed at if they are not placed 
in column 1 and the comment does not occur within a statement. 
(Default 61) 

linecom 
intrastatement comments at 
source segment apply to an 
treated as indented comments 
Example: /* format: linecom 

the 2nd of a line in the original 
entire line. These comments are 
and are placed in column comcolN. 
*! 

if line status < 3 !* Is line active? */ 
: char count > 0 

then return; 
"linecom 

intrastatement comments 
(Default) 
Example: /* format: "delnl 

if char = "040"b3 
: char count 

then return; 
indcomtxt 

apply to 

*I 
!* space */ 
> 0 

the preceding token. 

if there is no horizontal or vertical white space between the 
"!*" and the comment text or between the end of the comment 
text and the"*/", then insert a space. Indent the text of 
continuation lines of a multiline comment so they line up. 
Indenting the text of continuation lines does not apply to 
intrastatement comments. The horizontal white space between 
~he "!*" and the comment text on the first line of a comment 
~s not reduced, however, leading horizontal white space on 
subsequent lines is replaced by sufficient horizontal white 
space to indent the line. If the comment is placed in column 
N, the text of each line of the comment begins in column N+3. 
Example: 
Input: /* format: indcomtxt */ 

a = 3; I* Here we have a very 
complicated assignment 
statement. */ 

Output: 

"indcomtxt 

I* format: 
a = 3; 

indcomtxt */ 
I* Here we have a very 

complicated assignment 
statement. */ 

leave the white space at the beginning of each line of a 
comment alone. The character-string between the "/*" and the 
"*!" of a comment is never changed in this mode. (Default) 

Page 17 



Multics Technical Bulletin MTB-437 

Styles: 
style1: on,ind5,11126,initlm6,indattr,inddcls,declareind8, 

dclind8,idind23,struclvlind2,Aifthenstmt,Aifthendo, 
Aifthen,indnoniterdo,Aindend,Aindthenelse,case,Adelnl, 
Ainsnl,comcol61,Alinecom,Aindcomtxt (Default) 

style2: 
style3: 
style4: 

style1 ,delnl,insnl 
style2,Ainddcls,declareind10,dclind10,idind20 
style1 ,Aindattr,Ainddcls,declareind9,dclind5,ifthendo, 
Aindnoniterdo,linecom,indcomtxt 

Irreversible changes: 
Several modes can cause irreversible changes to be made to the 
source program. Suppose that program p.pl1 was formatted with 
style S and does not contain a prevailing style control comment. 
Then style T causes an irreversible change if the following 
command line produces a program q.pl1 that differs substantially 
from p.pl1. 

format_pl1 p q -modes T; format_pl1 q -modes S 

The following modes can cause irreversible 
insnl, Alinecom,delnl and indcomtxt. If a 
formatted with format pl1, the on mode 
irreversible changes. -

Style summaries: 

changes: delnl, 
program was not 

may also cause 

Style1, the default style, indents declare statements, indents 
the attributes of declare statements, lines up the end statement 
of a noniterative do group in a then or else clause under the 
"do" and indents the statements of the do group. No irreversible 
changes, such as with the delnl, insnl or indcomtxt modes, are 
made. Example: 

I* format: style1 */ 
declare entryname 
if x = 2 
then do; 

end; 

a = 43; 
b = 21; 

char (32); 

Style2 is the same as style1 except using the delnl,insnl modes. 
This style can cause irreversible changes. 

Style3 is the same as style2 except that declare statements are 
started in column one and the columns the identifiers and 

Page 18 



Multics Technical Bulletin 

attributes start in are aligned on tab stops. 
cause irreversible changes. Example: 

I* format: style3 */ 
declare entryname 

if x = 2 
then do; 

end; 

a = 43; 
b = 21 ; 

char (32); 

MTB-437 

This style can 

Style4 starts declare statements in column one, doesn't indent 
the attributes in declare statements, formats noniterative do 
groups in then or else clauses by indenting the statements of the 
noniterative do group one indentation level from the "if" or the 
"else" and starts the end statement in the same column as the 
"if" or the "else". This style uses the "delnl,"insnl modes, but 
still can cause irreversible changes from indcomtxt mode. This 
style resembles that of the indent command. Example: 

I* format: style4 */ 
declare entryname char (32); 

if x = 2 then do; 
a = 1n; 
b = 21 ; 

end; 

Error checking: 
Parenthesis balance checking is done for statements that are not 
partially contained in include files. A warning is printed if an 
end statement with a closure label terminates more than one block 
or group. If out path is omitted and there were errors, the 
source segment is not overwritten, and a formatted copy is left 
in the process directory. An error message is printed if a 
control comment is incorrect. 

Error severities: 
The following severity values are returned by the severity active 
function when the "format_pl1" keyword is used: 

Value 
0 
1 
2 
3 
4 
5 

Meaning 
No error or format_pl1 has not been used yet. 
Warning. 
Correctable error. 
Fatal error. 
Unrecoverable error. 
Bad control arguments, could not find source 
or other severe errors. 

Page 19 



Multics Technical Bulletin MTB-437 

Notes: 
If a control argument and its opposite are both present on the 
command line, the rightmost one is chosen. This command does not 
work properly with include files that contain partial statements 
or unbalanced. blocks or groups. Also the %page macro or the 
%skip macro must not occur within a statement. Throughout this 
document, the term "token'' excludes comments. See the Multics 
PL/I Language Specification, Order No. AG94, for definitions of 
words describing syntactic constructs in a PL/I program, e.g. 
independent statement, declaration list, declaration component, 
condition prefix list, label prefix list, block, group and 
noniterative do group. 

Page 20 


