
,,,..
MULTICS TECHNICAL BULLETIN MTB-459 A

To: MTB Distribution

From: Chris Jones

Date: 20 January 19 81

Subject: New Installation Too1s

Introduction

This MTB is a revision of MTB-459. While the purpose of the
tools described is the same as that described in MTB-459, there
has been a crucial change in the output of the tools. It is not
necessary to have read MTB-459 to understand this MTB.

Problem Definition

When a Multics programmer has completed the development cycle,
there still remains the unautomated task of getting the change
installed. This involves several potentially time-consuming
tasks, including ensuring that the library maintainer has the
correct access to the changed segments, determining that the
segments were compiled with the correct options and with the
correct version of .the compiler, notifying the library maintainer
of the changes to be made, and other such mundane tasks. It is
also necessary to fill out a set of forms: one summary (yellow)
form and one or more detail (orange) forms, one for each bound
segment. Every source, include, bindfile, info, etc. segment
which is part of the submission must be listed. This entire task
is time-consuming and subject to error, and can better be done by
tools. ·

Requirements .Q.f_ ~ Solution

The task (or series of task~) described above can essentially
reduced to two simpler tasks:

- filling out the yellow (summary) form
- invoking some tools to do the rest of the work

The continued use of the summary form . is required for two
reasons:

- to provide a permanent written description of the
change

- to provide a signoff mechanism for auditors and project
controllers

Multics Project internal working docqmentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-459 A

The present requiremehts of the library installation tools are as
follows:

- that the submitter provide correct access
- that the components of the submission have been

compiled with the correct options and with the
installed compiler
that the data specified on the forms be correct, i.e.
the components of the submission are where the forms
indicate

In addition, any au~omated tools should provide such checks as:

- object/source correspondence
- modification of the source more recently than the

object
- identically named segments in different archives

If such tools are to be useful, they must function independently
of how the data to be submitted is organized and stored. Thus
they must resolve links and be pr~pared to deal with archives as
well as free-standing segments. They must also be prepared to
deal with the many different types of material now submitted to
the libraries, such as ec's, info segments, sources, and objects.
Lastly they must provide a reasonable interface to the user, the
installer, and the library tools.

Proposed Solution

This MTB proposes a set of such tools. Their assumptions are as
follows:

- They incorporate
directory". This
required for a
them. Segments
user's option.

the concept of
directory contains

single installation
may or may not be

an "installation
all the segments

and/or links to
archived, at the

- These tools will not actually prepare
form; instead they will build a data
translator ·source segment) from which the
find all the information required.

the detailed
base (an rdc
installer can

- These tools are intended to automate the normal
installation process and provide warnings and
cross-checks wherever conveniently practical. They are
not intended to provide verification that data can be
translated (i.e. compiled or bound without error), or
that info segments actually describe that which they
purport to.

Extensions .a.nd.. Future Issues

•••

MTB-459 A Page 3

Once these tools have been accepted and are in general use, an
effort should be made to integrate their output data base with
the library· maintenance tools so that the installer's work is
more completely automated. tn addition, other more exotic
cross-checks can be added as a need is perceived for them. These
new checks could include:

- binder verification
- compilation verification
- format verification using format_pl1
- source program checks for out-of-date functions

copyright notice verification
- STI handling

Program Descriptions

There are actually three programs described here. The first is
merely a tool to set up a data segment, and is invoked rarely
(usually when the library maintainer changes). The second and
third programs do all of the work described previously.

create pinst data

This program is used to create a data segment (named pinst~data_)
which contains three entries: access_name, lib_maint, and
lib_desc. The first is an access name; this is a person-id which
must have "r" access to · all 6omponents of the installation and
"s" access to the installation directory and its parent
directory. The second is the name of the person to whom mail is
to be sent requesting that the installation information be
processed. The last is the name of the library descriptor to use
when determining where the various entries in the installation
directory belong. If this descriptor is the null string, it
designates the default library descriptor. An example of its use
is shown below (the exclamation points serve to denote items
typed by the user--they do not appear during an actual
invocation):

create_pinst_data

create_pinst_data: Access name? ! JC.SysMaint.*

create_pinst_data: Library maintainer?

create~pinst_data: Library descriptor?

prepare.installation

JAnderson.SysMaint

This tool actually does most of the work described previously.
It can deal with object, info, bind, pl1, alm, fortran, lisp,
eds, rd, et, cobol, ted, teco, and table files, and with include
files for pl1, alm, and lisp. It checks for necessary access and

Page 4 MTB-459 A

sets it if requested (via the -force control argument). It
ch~cks to see that unarchived segments are identical to those
with the same name in an archive. It checks for source-object
correspondence both by name and by date modified. In addition,
it checks for correct pl1 compilation options (unless
prepare_installation is invoked with -brief, the absence of
-optimize or the presence of -profile or -table is flagged as an
error). Its MPM writeup follows:

~: prepare_installation

The prepare_installation command builds an rdc source
segment containing all the information needed by a library
maintainer to install a ~ystem change. It works with a directory
called the installation directory. All of the components of an
installation either must be in this directory, or have links in
this directory to them. prepare_installation figures out which
segments are to be installed, ensures that both source and object
segments are present, that the object segments were created after
their corresponding source segments were last modified, and that
the correct compilation options were used in the case of pl1
compilations. It creates its output in a segment in the
installation directory. If the installation directory's
entryname is "foo", the segment will have the name "foe.install".
If foe.install already exists, it will be overwritten.

The output of prepare_installation is an ascii segment which is
later parsed by a reduction compiler translator. Its syntax is
described below. After this phase is complete, the user has the
choice of editting this segment to fill in unknown library names,
specify addnames, add comments, etc. When this step is
completed, another program is invoked which checks this segment,
as~igns a unique ID to this submission, and sends mail to the
library maintainer informing him or her of the pending
installation.

The ascii segment output by prepare_installation is in a form
which can be translated by a reduction compiler translator. It
consists of a header followed by a series of statements
describing files to be installed and where they are to be
installed.

The format of the header is particularly rigid. This means that
when you are editting the segment, you should not change the
header. While changing the header may not cause any problems, it
could, and there is.no reason to change it anyway, so don't touch.
it! The header consists of five statements in a specified order.
See the example below for the form of the header. The meaning of
most of these fields should be obvious. The ID statement
contains a template ID (the string "XXXXXXXXXXXX") which is A\
overwritten by the submit_installation command when it assigns

MTB-459 A Page 5

the ID. The Descriptor statement has the name of the descriptor
which was used to process the submission.

After the
present),
names of
installer
syntax of

first five statements of the header (which are always
there is an optional group of statements which tell the

any asc11 segments which convey instructions to the
(e.g. those specified by -add_name and -misc). The

these statements is:

<info_stmt> ::=<keyword>: <pathname>;
<keyword> ::= Addname_info : Delete_info : Misc_info

The body of the ascii segment consists of sequences of statements
which describe what goes where in this submission. A BNF
description of it is:

<body> ::=<group> [, <group>]
<group> ::= <in_stmt> [<install_group> [, <install_group]]
<install~group> ::= { <install_stmt> [<from_stmt>J

[<addnames_stmt>] : <delete_stmt> }
<in_stmt> ::= In: <pathname>;
<install_stmt> ::=install: <name>;
<from_stmt>. : : = from: <name>;
<delete_stmt> ::=delete: <name> [, <name>] ••• ;

,,,.. <addnames_stmt> ::= addnames: <name>[, <name>] ••• ;

The prepare_installation tool will write the "In", "install", and
"from" statements. The user will have to add any "addnames" and
"delete" statements which are necessary (normally none will be
necessary). In addition, if prepare_installation is unable to
find a given segment in any library, it will output an "In"
statement with a name of "****", as an aid in denoting which
library names must be supplied by the user. This would most
likely occur when a new segment is being added to a library.

Usage

prepare_installation {path} {-control_args}

where:

1. path
is the pathname of the installation
directory. This is the directory where all
sources, archives, objects, etc. (and/or
links to them) are located. The "add",
"delete", and "misc" asc11 text segments
(described below) are also in this directory.

Page 6

2.

MTB-459 A

It is also the directory into whicn the rdc
source segment describing the installation
will be put.

control_args
can be one or more of the following:

-force, -fc
If this control argument is used,
prepare_installation will try to ensure
that <pinst_data_$access_name> has the
required access by modifying the ACLs
(as necessary) of the installation
directory, its parent, and the segments
in the installation directory which are
to be installed.

-check, -ck
specifies that no rdc source segment
will be created

-brief, -bf
specifies
invalid
mismatch
will not

that warning messages about
compiler options and date
between the source and object

be printed.

-add name ename
specifies a free-form ascii text segment
containing instructions to the installer
concerning names which are to be added,
deleted, or changed.

-misc ename
specifies a free-form ascii text segment
which contains misc~llaneous
instructions to the installer.

-delete ename, -dl ename
specifies a free-form ascii text segment
containing instructions to the installer
concerning segments to be deleted as
part of this installation.

-access_name ACCESS~NAME, -an ACCESS~NAME
gives an access name list to be used
instead of the one in
pinst_data_$access_name_list.

-lib_desc Descriptor_name
specifies a library
used instead of
pinst_data_$lib_desc

descriptor to be
the one in

MTB-459 A

Example

ls -a -sh example>**

Segments= 1, Lengths= 1.

r w misc_instructions

Directories = 3.

sma incl
·sma o
sma s

Links = 7.

incl.archive >udd>m>clj>pinst>example>incl>incl.archive
get_io_segs >udd>m>clj>pinst>example>o>get_io_segs
iom~manager >udd>m>clj>pinst>example>o>iom_manager
print >udd>m>clj>pinst>example>o>print

Page 7

get_io_segs.pl1 >udd>m>clj>pinst>example>s>get_io_segs.pl1
print.alm >udd>m>clj>pinst>example>s>print.alm
iom_manager.alm >udd>m>clj>pinst>example>s>iom_manager.alm

r 09:05 0.192 O

prepare_installation example -misc misc_instructions
print was found in more than one library. Pick one.
Enter a number from 1 to 3~
1 >idd>sss>object>bound_fscom1~.archive::print
2 >sss>bound_fscom1_
3 >ldd>bos>object>print
3
r 09:08 50.668 1075

pr example>example.install

example.install

Version: 1;
ID: XXXXXXXXXXXX;
Submitter: CLJones.Multics;
Date: "12/22/80 0908.1 est Mon";
Descriptor: multics_libraries_;

12/22/80 0908.5 est Mon

Misc~info: >user_dir_dir>Multics>CLJones>pinst>example>misc_instructions;

In: >ldd>hard>source>i7.archive::iom_manager.alm;
install: iom~manager.alm;

Page 8

In: >ldd>bos>source>print.alm;
install: print.alm;

In: >ldd>hard>source>g1.archive::get_io_segs.pl1;
install: get_io_segs.pl1;

In: >ldd>bos>object>print;
install: print;

In: >ldd>hard>bc>bound_iom_wired.archive::iom_manager;
install: iom~manager;

In: >ldd>hard>bc>bound_temp_1.archive::get_io_segs;
install: get_io_segs;

In: >ldd>bos>include>bosequ.incl.alm;
install: bosequ.incl.alm;
from: incl.archive;

In: >ldd)bos>include>bos_tv.incl.alm;
install: bos_tv.incl.alm;
from: incl.archive;

r 09:08 0.249 16

submit installation

~: submit_installation

MTB-459 A

The submit~installation command finishes the job of
preparing a submission. It is invoked after prepare_installation
has completed and any editing has been done on the rdc source
segment. It checks the rdc source segment for correct syntax,
and if there are no errors, assigns a unique ID number to the
submission, and sends mail to the library maintainer.

Usage

submit~installation {path} {-control_args}

where:

1 • path
is the
directory.
rdc source

pathname of the installation
This is the directory where the

segment is located. If this

... -"" ~-- ~

MTB-459 A Page 9

argument is omitted, the current working
directory is assumed instead.

2.

Example

control_args
can be the following

-lib_maint Person_id
gives an installer name to be used instead of
the one in pinst_data_$lib_maint.

This example is the second half of the submission prepared in the
example given for prepare_installation, above. After
submit_installation has run (and sent mail to the library
maintainer), the beginning of the installation segment is printed
to show that the ID field has been updated.

submit_installation example
r 09:08 0.623 36

pr example>example.install 1 5
Version: 1;
ID: 15 ;
Submitter: CLJones.Multics;
Date: "12/22/80 0908.1 est Mon";
Descriptor: multics_libraries_;
r 09:09 0.185 1

