
Multics Technical Bulletin MTB-462 Rev. I

To: Distribution

From: Jim Davis

Date: 01/27/81

Subject: Interim Window System for the Menu Manager - Revised

This document is a re-issue of MTB 462, incorporating
changes from review. It is being issued to document the video
system, not for purposes of review, although comments are still
welcome.

The reader should be familiar with MTB-458 ("Towards a
Windowed Video System"), MTB-461 (riA Window Video System
Implementation"), with the current input conventions (described
in the MPM Communications I/0 Manual CC 92), and with the Emacs
editor (Emacs Text Editor User's Guide CH27).

send comments to

By continuum (System M):
>udd>m>jrd>mtgs>tv

By the Multics Extended Mail Facility
JRDavis.Multics @ MIT-Multics

or by phone:
(617)-492-9382 HVN 261-9382

Multics Project internal working documentation.
distributed outside the Multics Project.

01/27/81

Not to be

page 1

' '

MTB-462 Rev. I

1. OVERVIEW

The Multics Video system is a upwards compatible extension
to the I/0 system. It provides the user with multiple windows
(virtual video terminals), each associated with an I/0 switch.

The Video System is divided into
Control (TC) and Window Management (WM).
of TC per terminal attached to the

·attachment of WM for each window.

two layers, Terminal
There is one attachment
user's process, and one

TC interprets the video attributes of the TTF for the
terminal in use, and sends terminal dependent control sequences
to the device. TC does all ring zero I/0, and performs blocking
for the user. TC also supports reconnection.

TC is implemented by an I/O module vtty_. Ideally TC
should be implemented by tty_, but it is hard to switch tty_'s in
mid stream, and users should not be exposed to the intermim
window system without asking for it. It is not appropriate to
install a new tty_ (with possible bugs), and not necessary.
Terminal Control does need to call ring 0 hes_ tty entries for
echo negotiation, so vtty_ will obtain the terminal device index
from the ring four tty_ dim.

WM implements a virtual terminal by
virtual terminal implem~nted by TC.
conversion, MORE processing, and the input
implemented by an I/O module named crt_.

making calls
WM implements
line editor.

on the
output
WM is

Like all I/0 modules, these are not called directly by the
user. Rather, the user calls iox_ (or ioa_, or language i/o),
which in turn calls the appropriate entry in the appropriate I/0
module. In addition to the normal iox_ entries, the modules
contain many video entries, and these are called by a subroutine
(similar to iox_) that transfers to the appropriate entry through
a per-attachment transfer vector. This subroutine is called
window_, and is the PL/I interface to the window system.

We also provide a command line interface to the window
system, the window_call (wdc) command. This command is to
window_ what the io_call (io) is to iox_: a way of invoking
entries. This command is probably of most value in debugging
video programs and the video system.

: To the user, the most significant and visible features of
the video system are real-time editing and MORE processing.
Real-time editing is a way of correcting errors that is
incompatible with existing Multics erase and kill processing~
MORE processing is an extension to EOP processing that allows
unwanted output to be discarded.

page 2 01/27/81

MTB-462 Rev. I

2. REAL TIME EDITING

2.1. The Erase Character

The erase character removes the character to the left of the
cursor. The cursor moves to the left, and the character is
removed. This is significantly different from the current
scheme.

First, an erase character immediately deletes a character.
Emacs users have grown accustomed to this, but few have seen this
in regular Multics usage.

Second, exactly one character is deleted. In the old
scheme, an erase character deleted either the complete contents
of a single column position (if struck over, or immediately to
the left of a column position containing printing characters) or
it deleted all white space to the nearest printing character (or
beginning of line, which ever came first).

One reason for this change is that real-time erasure is done
as soon as the key is struck, before the string is in canonical
form. Neither the user nor the system can easily tell what
columns hold which characters. Deleting only one character is
easy for both.

Secondly, the old scheme required the complete erasure of
whitespace because the user could not otherwise tell the
resultant column position simply by inspection. Since the new
scheme can move the cursor, the new column position will be
obvious.

Compatibility would dictate that the old scheme be retained,
but there are reasons why the incompatibility should be
tolerated: This new way is more like Emacs, which has helped to
form people's "video intuition"; the old properties were not, I
suspect, widely known or used; the new way is more convenient.

A consequence of real-time erasure is that an erase
character cannot be "cancelled". In the old scheme, an erroneous
erase character could be overstruck with a graphic character,
causing it to obliterate its own (non-empty) column position,
rather than whatever lay to its left.

The default erase character is "#", and is settable on a
per-window basis by the set_editing_chars control order.

01/27/81 page 3

MTB-462 Rev. I

. 2.2. The Kill Character

The kill character deletes the entire line thus far typed.
Again, this happens immediately. The deleted line is saved, and
can be recovered. See below. The kill character is settable
per-window by the set_editin~chars control order, and defaults
to "@".

2.3. The Line Editor

The video system provides more powerful editing than
erase and kill processing, because this is possible and
The interface resembles a very small subset of Emacs.

simple
useful.

This
· subset can probably be expanded as resources permit.

The Line Editor is controlled by control characters.
Control characters are known throughout the industry, but were
unknown to Multics until the rise of Emacs. Control characters
are characters in the range 000 to 037. Most terminals generate
control characters with a shifting key (called CONTROL) which
zeroes the "100" bit of the character typed. For example, if
CONTROL is held while "A" (octal 101) is typed, then SOH (octal
001) is generated. For this reason it is common to refer to SOH
as CONTROL A, and the notation AA is used.

In the following list, ESC means the ASGII .character ESCAPE
(octal 033), not the escape character, and the prefix A

represents a control character.

DEL

ESC DEL

ESC erase

same as the erase character.

erases one word. A word is defined just as in
Emacs, as an unbroken string of upper and lower
case alphabetics, numerals, underscores, and the
backspace character.

same as ESC DEL.

The Line Editor keeps a ten-deep kill ring, just as Emacs
does. Text is saved on the kill ring by the kill character and
by the word kill commands. Suc~essive word kills merge the words
in the kill ring. The initial contents of the kill ring is the
last line returned in the window. This provides editing of the
previous command line.

page 4

retrieves deleted text from the kill ring. This
is the only way to recover from an erroneous kill

01/27/81

MTB-462 Rev. I

character.

ESC Y can be typed only after either AY or ESC Y. It
deletes the text just retrieved, without saving it
on the kill ring, rotates the ring (to the next
most recently killed text) and retrieves the new
item.

The following are also recogninized:

causes the window to be cleared, and the current
'input line displayed again, starting from home.

"quotes" the next character, causing it to have
no special meaning. This is useful for entering
control characters. It serves some of the same
purposes as the input escape processing.

No other control characters have meaning. If any are typed,
the only action is to cause an audible alarm.

2.4. Input of Control Characters

Any
between

control character (character whose octal value is
000 and 037) can be input by typing a two character

The first character is called the control character
code, and the second is a mnemonic for the control

sequence.
precedence
character.

The default control character precedence code is Record
Separator· (RS, octal 036). This character is also known as
Control Circumflex, or "AA", so it has some mnemonic value.
Typing the control precedence character has about the same effect
on the next character as holding down the CONTROL key does. For
example, "AAM" generates CR (or AM).

The control precedence character is interpreted by the
Terminal Control layer of the Video System, not the Window
Manager. Thus a control character generated in this way looks
just like any other control character, as far as a window is
concerned. For example, hitting the BACKSPACE key, typing'
CONTROL H, and typing AAH all have the same effect on a window,
whereas the escape sequence "\010" does not (the latter inserts a
non-canonical backspace into a column position all its own).

The control precedence character can be changed by control
order.

The control pref ix is interpreted only when the "ctlpfx"

01/27/81 page 5

i I

MTB-462 Rev. I

mode (of TC) is on. This mode is on by default.

3. MORE .PROCESSING

As lines are displayed in the window, old lines are scrolled
off the top of the window or otherwise removed. When output
would cause a line to be removed that has been displayed since
the most recent input, it is assumed that the user may not have
had a chance to read it, and MORE processing occurs. The
question "MORE?" appears at the bottom of the screen, and no
further output occurs until the user either indicates readiness
or that pending output is to be discarded. MORE processing is
controlled by the "more" mode, which is enabled by default.

Output resumes if the user strikes CR or FF, and is aborted
if the user strikes CONTROL o. The. characters used can be set by
a control order. Typeahead characters are not seen by MORE
processing. The response to MORE must be typed after the prompt
appears. All other characters are buffered to be returned later.

When output is discarded, WM simply ignores output until a
get_line or get_chars call is made, or a "reset_more" control
order call is made, or the window is cleared, or the cursor is
homed. Warning: a promp~ sent just before a get_line call will
not be printed if output is discarded, unless the prompter makes
an effort to first reset the discarding.

page 6 01/27/81

~

window_ window_

.N..am.e.: window_

The window_ subroutine performs I/0 to, and controls, a
window. A window is a virtual video terminal with an addressable
cursor and selectable erase, in a terminal independent manner.

The virtual terminal implemented by window_ is a rectangle
of characters, arranged in a variable number of lines (Y) ~nd
columns (X). Each screen has a "cursor" which is at some
position in the window. I/0 is done at the current cursor
position. The home position (origin) is in the upper left
corner, line 1, column 1.

< --------------- columns -------------->
+---------------------------------------+ A

L
I
N
E
s

+ +

The window_ subroutine is used in conjunction with the iox_
subroutine to call entry points in an I/O module. The I/0 module
does the actual work, but is called through window_. The two-I/0
modules that window_ can be used with are crt_ and vtty_.

The virtual terminal . implemented by window_ corresponds
closely to common video terminals. The features of the terminal
are defined implicitly by the entries below. Not all entries can
be supported on all real terminals. The result of calling an
unsupported feature is the error code error_table_$no_operation. '
Programs can determine whether the device in use supports a given
operation by making a get_capabilities control order, described
in the write-up of crt_, below.

Additional terminals may be supported by defining their
video attributes in the Terminal Type File (the TTF). The MPM
Communications I/0 Manual (CC92) describes the TTF.

Each entry point has an argument denoting the particular I/O
switch involved in the operation. The I/O switch pointer is
obtained from iox_.

01/27/81 page 7

window_ window_

There are several
window_ entry points.
arguments, an I/O switch
additional arguments.

types of arguments
Every entry point

pointer and an error

accepted by the
has at least two
code. Some have

iocbp

code

1

c

count

is the first argument to every entry point.
points to the iocb for the window.

Its

is the last argument to every entry point. It is a
standard system error code.

is the line number.

is the column position.

is a count of characters or lines (as appropriate·) to
be operated on. ~

region_width
is the width of a region to be operated on, specified
in characters.

region_height
is the height of a region to be operated on, in
characters.

Arguments used only with a specific entry point are
documented with that entry point. The calling sequences for all
the entry points are in the include file window_dcls.incl.pl1

Entries are listed in categories.

In all entries, an attempt to operate outside the window
will result in the error code error_table_$out_of_window, and the

page 8 01/27/81

window_ window_

operation will not be performed.

Cursor Motion

Entry: window_$position_cursor

This entry will move the cursor to any requested position on the
screen.

usage

dcl window_$position_cursor entry (ptr, fixed bin, fixed
bin, fixed bin (35);

call window_$position_cursor (iocbp, 1, c, code);

Entry: window_$pqsition_cursor_rel

usage

The entry moves the cursor relative to the current location.

dcl window_$position_cursor_rel entry (ptr, fixed bin, fixed
bin, fixed bin (35));

call window_$position_cursor_rel (iocbp, l_change, c_change,
code);

where:

l_change (input)
is the change in line number.

c_change (input)
is the change in column position.

01/27/81 page 9

window_ window_

Entry: window_$home

This entry moves the cursor home. The home position is the
; upper left hand corner of the screen, (1, 1).

usage

dcl window_$home entry (ptr, fixed bin (35));

call window_$home (iocbp, code);

Entries: window_$cursor_left
window_$cursor_right
window_$cursor_up
window_$cursor_down

These entries move the cursor one position in the direction
indicated by the name.

usage

dcl window_$cursor_left entry (ptr, fixed bin (35));

call window_$cursor_left (iocbp, code);

Selective Erasure

Entry: window_$clear_window

This entry clears the entire window to spaces, and leaves the
cursor at home.

usage

dcl window_$clear_window entry (ptr, fixed bin (35));

page 10 01/27/81

window_ window_

call window_$clear_window (iocbp, code);

Entry: window_$clear_to_end_of_window

the
the
The

This entry clears all of the window between the
end of the window. This includes all space to

cursor on the current line, and all lines below
position of the cursor is not changed.

cursor and
the right of
the cursor.

usage

dcl window_$clear_to_end_of_window entry (ptr,
fixed bin (35));

call window_$clear_to_end_of_window (iocbp, code);

Entry: window_$clear_to_end_of_lines

the
are
the

This entry clears all space to the right of the cursor on
current line to spaces. Positions to the left of the cursor

not affected. The cursor is·not moved. It can also clear
complete contents of suceeding lines.

usage

dcl window_$clear_to_end_of_lines entry (ptr, fixed bin,
fixed bin (35));

call window_$clear_to_end_of_lines (iocbp, count, code);

where:

count (input)
is the count of lines to clear. It must be greater
than zero. If it is 1, then only the current line is
cleared. If greater than one, (say N) then the next
N-1 lines are completely cleared.

01/27/81 page 11

window_

Entry: window_$clear_region

This entry clears the region specified, and
cursor at the upper left hand corner of the region.
is defined by giving the upper left hand corner
column), and the width and height of the region.

usage

window_

leaves the
The region
(line and

dcl window_$clear_region entry (ptr, fixed bin, fixed bin,
fixed bin, fixed bin, fixed bin (35));

call window_$clear_region (iocbp, 1, c, region_width,
region_height, code);

Scrolling

Entry: window_$scroll_window

This entry scrolls the t'1indow a given number of lines. The
window may be scrolled up or down. A positive scroll count
scrolls the window up - lines are deleted from the top of the
window, and new, blank lines are added to the bottom. The cursor
is left at the beginning of the first new blank line. A negative
count scrolls the window down - deleting 1 in es from the bot tom,
and adding lines to the top. The cursor is left at home. It is
an error to call this entry if the terminal does not support
either scrolling or insert and delete lines.

usage

dcl window_$scroll_window entry (ptr, fixed bin, fixed bin
(35));

call window_$scroll_window (iocbp, count, code);

page 12 01/27/81

window_ window_

Entry: window_$scroll_region

This entry scrolls a region a specified number of lines up
or down, in the same way that window_$scroll_window scrolls the
entire window.

usage

dcl window_$scroll_region entry (ptr, fixed bin, fixed bin,
fixed bin, fixed bin, fixed bin, fixed bin (35));

call window_$scroll_region (iocbp, 1, c, region_width,
region_height, count, code);

Detailed Alteration of th~ Screen

Entry: window_$insert_text

This entry inserts text at the current cursor position.
Text already on the window at or to the right of the cursor is
shifted to the right to accommodate the new text. It is an error
to call this entry if the terminal does not support the insertion
of text.

usage

dcl window_$insert_text entry (ptr, char (*), fixed bin
(35));

call window_$insert_text (iocbp, text, code);

where:

text

01/27/81

(input)
is the character string to be written. Each
character in this string must, when output-converted,
occupy exactly one print position. The length of
this string must be such that characters moved to the
right will still stay on the current line in the
window. If these conditions are not met, the result
is undefined. The cursor is set after the last
character inserted ••

page 13

' window_ window_

Entry: window_$delete_lines

This entry deletes one or more lines from the window by
moving the cursor to the beginning of the current line, and
deleting the contents of that line by moving all lines below up
one position. This is repeated for as many lines as requested.
The cursor is left at the beginning of the line. It is an error
to call this entry point if the terminal does not support the
delete lines operation.

usage

dcl window_$delete_lines entry (ptr, fixed bin,
fixed bin (35));

call window_$delete_lines (iocbp, count, code);

Entry: window_$insert_lines

This entry inserts lines at the current line.of the window
by moving the cursor to the beginning of the current line, and
moving all lines below the current line down on position. The
newly created line is clear. The bottom line(s) must be clear,
so that text is not moved off the bottom of the window. If not,
the result is undefined. It is an error to call this entry point
if the terminal does not support the insert lines function.

usage

dcl window_$insert_lines entry (ptr, fixed bin,
fixed bin (35));

call window_$insert_lines (iocbp, count, code);

page 14 01/27/81

window_ window_

Entry: window_$delete_chars

This entry deletes characters on the current line. Any
characters to the right of the current cursor position on .. the
same line are moved to the left. Character positions opened up
on the right margin are filled with spaces. It is an error to
call this entry point if the terminal does not support the delete
chars operation.

usage

dcl window_$delete_chars entry (ptr, fixed bin,
fixed bin (35));

call window_$delete_chars (iocbp, count, code);

Miscellaneous Functions

Entry: window_$assert_cursor_position

This entry can be used when the caller of window_ has done
something non-standard to the window such that window_ may no
longer know the true cursor position.

usage

dcl window_$assert_cursor_position entry (ptr, fixed bin,
fixed bin, fixed bin (35));

call window_$assert_cursor_position (iocbp, 1, c, code);

Entry: window_$get_cursor_position

This entry is used to return the current window co-ordinates
of the cursor, which is always maintained by window_.

01/27/81 page 15

window_ window_

usage

dcl window_$get_cursor_position entry (ptr, fixed bin,
fixed bin,fixed bin (35));

call window_$get_cursor_position entry (iocbp, 1, c, code);

where x and y are output arguments of the current position.

Entry: window_$undefine_cursor_position

This entry may be used after the caller of window_ has
performed some non-standard operation which has left the cursor
in an unknown place. Calling this entry will disable any
optimizations that window_ might make on its next call based on
knowing the cursor position. The user should inform window_ of
the new cursor position by calling
window_$assert_cursor_position, or by an absolute cursor

· position. ~

usage

dcl window_$undefine_cursor_position entry (ptr,
fixed bin (35));

call window_$undefine_cursor_position (iocbp, code);

Entry: window_$output_raw_chars

This entry is used to output a terminal dependent sequence.
If the sequence moves the cursor, it is the callers
responsibility to inform window_ of the new position. If the new
cursor position is unknown, it is the callers responsibility to
so inform window_. The sequenc .. is sent to the terminal, but
results are undefined and terminal dependent.

page 16 01/27/81

window_

usage

dcl window_$output_raw_chars entry (ptr, char (*),
fixed bin (35));

call window_$output_raw_chars (iocb, sequence, code);

Entry: window_$bell

This entry rings the terminal bell.

usage

dcl window_$bell entry (ptr, fixed bin (35));

call window_$bell (iocbp, code);

Internal Entries

window_

The following entries are internal to the window system.
They are implemented by TC for use by WM only.

Entry: window_$get_chars_echo

This entry reads up to a requested number of characters,
echoing them as read, until either the caller supplied buffer is
full, or a "break character" is read. Echo Negotiation is
described in MTB-418.

usage

dcl window_$get_chars_echo entry (ptr, char(*),
fixed bin,fixed bin (21), char (1), fixed bin (35));

call window_$get_chars_echo (iocbp, buffer, columns,
chars_read, break_char, code);

01/27/81 page 17

window_ window_

where:

buffer (input)
is a caller supplied buffer to hold characters
returned.

columns (input)
is the number of columns between the cursor and the
end of the window. At most this many characters will
be returned.

chars_read (output)
is the number of characters returned. Each character
was echoed.

break_char
is the character
This character
break character,
filled.

(output)
that caused
has not been
or was typed

the echoing to stop.
echoed. It is either a
after all columns were

The window_$get_chars_echo entry point uses Echo Negotiation
to obtain and echo characters. This entry can only be used when
the cursor is at the end of a line. The break table must be
setup before hand, by a se~_break_table control order to TC.

Entry: window_$write_text

This entry writes text on the window in the current cursor
location.

usage

dcl window_$write_text entry (ptr, char(*), fixed bin (35);

call window_$write_text (iocbp, text, code);

; where:

text

page 18

(input)
is the character string to be written. This string
should consist of only ASCII graphics (octal codes
040 thru 176 inclusive), and should not be longer
than the space remaining on the current line.

01/27/81

window_

Entry:· window_$wri te

This entry flushes TC's buffer, if any.

usage

01/27/81

dcl window_$write entry (ptr, fixed bin (35);

call window_$write (iocbp, code);

window_

page 19

crt_ crt_

.N.mn.e.: c r t_

The crt_ I/0 module supports I/0 to a window a virtual
screen located on a real screen. In addition to the usual iox_
entries, the module provides terminal independent access to
special video terminal features such as a movable cursor,
selective erasure, and scrolling of regions. The module provides
a real-time input line editor, does output conversion and "MORE"
processing.

The crt_ module implements the Window Management layer of
the Multics Window Video System. Like all I/O modules, it is not
directly called by users; rather the module is accessed through
the I/0 system.

Attach Description

crt_ SWITCH {FIRST_LINE {HEIGHT {COLUMN_ORIGIN {WIDTH}}}}

where

SWITCH

FIRST_LINE

HEIGHT

is the name of the I/O switch · implementing Terminal
Control. This switch must be attached through vtty_.

is the line number of the line where the window is to
begin. If omitted, the first line is used.

is the number of lines in the window. It cannot be
supplied if FIRST_LINE is omitted. The default is to
use all lines to the end of the screen.

COLUMN_ORIGIN

WIDTH

page 20

is the column
column of the
omitted. If
must not be
available.

the terminal of the first
cannot be supplied if SIZE is

the default is 1. This value
than the number of columns

number on
window. It

omitted,
greate,..

is the width of the window.
COLUMN_ORIGIN is omitted.
window is the number of

It cannot be supplied if
The default width of the

columns between the

01/27/81

crt_ crt_

COLUMN_ORIGIN and the right edge of the terminal.

The attach args must specify a region which lies wholy in
the containing window. If not, the attachment is not made, and
the error_table_$out_of_window is returned.

When the window is attached it is cleared and the cursor is
left at home.

Opening

The following opening modes are supported: stream_input,
stream_output, stream_input_output.

Editing

On input via get_line, lines are edited. The user may
strike the erase character and the kill character to delete
characters and the entire line. Characters deleted are removed
from the screen.

Get Chars Operation

This operation returned exactly one character, unechoed,
regardless of the size of the callers buffer. The line editor
is not invoked by this call.

Get Line Operation

The get_line operation invokes the real-time input line
editor, and returns a complete line typed by the user. A
description of the typing conventions is given above.

01/27/81 page 21

, crt_ crt_

Control Operation

The following orders are supported:

get_window_inf o
returns information
the window. The
structure (declared

about the position and extent of
info ptr points to the following
in window_control_info.incl.pl1)

dcl 1 window_position_info,
2 version fixed bin,
2 origin,

where:

3 line fixed bin,
3 col fixed bin,

2 extent,
3 width fixed bin,
3 height fixed bin;

version

line

col

width

height

is the version number of this structure. It
must be window_position_info_version.

is the line number of the upper left hand
corner of the window on the containing screen.

is the column of the upper left hand corner of
the window on the containing screen.

is the width of the window.

is the height of the window.

set_window_info

page 22

causes the window to be relocated or to change size
(or both). The info ptr points the same structure
us,ed in the "get_window_info" control order, and the
values have the same meaning, but are new value for
the window to assume. It is an error to cause the
window to exceed the bounds of the screen. The

01/27/81

,...

crt_

results of overlapping another window
defined.

are

'crt_

not

get_capabilities

01/27/81

returns information about the generic capabilities of
the terminal. The info ptr should point to the
following structure (declared in
window_control_info.incl.pl1)

dcl 1 capabilities_info based

where:

(capabilities_info_ptr),
2 version fixed bin,
2 screensize,

3 columns fixed bin,
3 rows fixed bin,

2 flags,
3 insert_lines bit (1) unal,
3 delete_lines bit (1) unal,
3 insert_chars bit (1) unal,
3 delete_chars bit (1) unal,
3 scroll bit (1) unal,
3 true_windows bit (1) unal,
3 tabs bit (1) unal,
3 overprint bit (1) unal,
3 pad bit (28) unal,

2 line_speed fixed bin,
2 lines_per_scroll fixed bin;

version
is the version number of this structure and
must be capabilities_info_version.

columns
is the number of columns on the terminal

rows
is the number of rows (lines) on the terminal.

insert_lines
is true if the insert_lines function is
supported.

delete_lines
is true if the deletre lines function is
supported".

page 23

crt_ crt_

insert_chars
is true if the insert_chars function is
supported.

delete_chars

scroll

is true if the delete_chars function is
supported.

is true if the terminal is capable of
scrolling. This will be true for terminals
with insert and delete lines, or with direct
scroll features.

true_windows

tabs

is true if the terminal supports windows. If
this bit is not true, then the above functions
will fail on a window if it is not full-width
(vertical).

is true if the terminal can move the cursor to
a tab stop without erasing characters the
cursor passes over.

overprint
is true if sucessive characters at the same
location overprint.

line_speed
is the speed of the line to the terminal, in
characters per second.

lines_per_scroll

reset_more

if the terminal can scroll, this gives the
number of lines moved per scroll operation.
This is usually 1, but may be greater.

causes MORE Processing to be reset. All lines on the
window may be freely discarded without querying the
user.

get~editing_chars
is identical to the operation supported by tty_,
which see.

page 24 01/27/81

crt_ crt_

set_editing_chars
is identical to the operation supported by tty_, '
which see.

get_more_respo.nses
returns information about the
processing. The info pointer
following structure

responses to MORE
should point to the
(decared in

window_control_info.incl.p11)

dcl 1 more_responses_info aligned based
(more_responses_info_ptr),

2 version fixed bin,
2 n_yeses fixed bin,
2 n_noes fixed bin,
2 yeses char (32),
2 noes char (32),

where:

version (input)
is the version number of this structure and
must be set to more_responses_info_version_ 1,
also declared in the include file.

n_yeses (output)
is the number of different
responses, from zero to 32.

affirmative

n_noes (output)
is the number of different negatives.

yeses (output)
is the concatenation of all the affirmatives.
Only the first "n_yeses" are valid.

noes (output)
is the concatenation of all negatives.
the first "n_noes" are valid.

set_more_responses

Only,

Sets the responses. The data structure is the same
one used for the 11 get_more_responses" order. At most
32 yeses and 32 noes may be supplied. It is highly
recommended that there be at least one yes, so that
output may continue. The "yes" and "no" characters
must be distinct, otherwise
error_table_$overlapping_more_responses is returned,

01/27/81 page 25

crt_ crt_

and the responses are not changed.

Modes Operation

The modes operation is supported. The recognized modes are
listed below. Some modes have a complement indicated by the
circumflex character (A) that turns the mode off (e.g. Amore).
For these modes, the complement is displayed with that mode.
Some modes specify a parameter that can take on a value (e.g.
more_mode). These modes are specified as MODE=VALUE, where MODE
is the name of the mode and VALUE is the value it is to be set
to. Parameterized modes are indicated by the notation (P) in the
description below.

more, Amore
Turns MORE processing on. Default is on.

more_mode (P)
controls behavior when a line must be removed to make
room for another. Values are:

scroll lines are scrolled off the top of the window.

wrap

clear

This is the default for all terminals capable
of scrolling.

output resumes at the first line. With each
new line, the contents of the old line are
erased, to make room for new characters. This
is the default for all other terminal types.

the window is cleared, and output starts at
home.

more_prompt (P)
is the string printed to prompt the user when MORE
processing occurs.

vertsp, Avertsp

, page 26

is only effective when the more mode is on. When
vertsp mode is on, output of a FF or VT will cause an
immediate MORE query. The default is Avertsp.

01/27/81

crt_ crt_

rawo, Arawo
causes following characters to be output with no
processing whatsoever. The result of output in this
mode is undefined.

can, Acan
causes input lines to be canonicalized before they
are returned. The default is on.

erkl, Aerkl
controls the editing functions of get_line. The
default is on, which allows erase and kill
processing, and the additional line editor functions.

esc, Aesc
controls input escape processing. The default is on.

rawi, Arawi

11 (P)

pl (P)

acts as a master control for can, erkl, and esc. If
this mode is off, none of the input conventions are
provided. The default is on, and the presence of a
component of input conventions is controlled by a
single mode.

is the width of the window, in characters. Changing
the width may also require changes to the"more_mode".

is the height of the window, in characters.

red, Ared
controls interpretation of red shift and black shift
characters on output. The default is Ared, which
ignores them. In red mode, the character sequence
given in the TTF is output. The effect is undefined
and terminal-specific. In some cases, "red shifted"
output appears in inverse video, but this is not
guarenteed.

ctl_char,Actl_char
specifies that ASCII control characters other than
format effectors are to be accepted as input, except
for the NUL character. If this mode is off, all such
characters are discarded, and the bell (if any) is
rung. Note that several of the control characters
are used for editing. The default is off.

01/27/81 page 27

. i

crt_ crt_

Control Operations from Command Level

Those control operations which require no info_ptr may be
performed from command level using the io_call command, as
follows:

io_call control switch_name order_arg
where:

switch_name
is the name of the I/0 switch.

order_arg
· can be any control order described above under

"Control Operation" that can accept a null info_ptr.

The io_call active function is not supported.

page 28 01/27/81

-·

vtty_ vtty_

~: vtty_

The vtty_ I/0 module supports the Terminal Control layer of
the Multics Window Video System.

Entry points in this module are not called directly by
users; rather the module is accessed through the I/0 system.

Attach Description

vtty_ switch

Where switch is the I/0 switch attached to tty_. (This will
normally be user_i/o.) The attachment .of this switch is moved to
a newly created dummy switch, and the target switch is attached
to the dummy switch through syn_. These operations are undone
when the vtty_ module is detached. The dummy switch's name is
"tty_i/o" followed by 15 unique characters.

Opening

The module is opened for stream_input_output whe~ it is
attached. The open operation is not supported.

I

Buffering

This module maintains input and output buffers to reduce
calls into ring O. The output buffer is written out when full or
by explicit request •

.Q.e.t Chars Operation

The get_chars operation always returns
character, unechoed. This module calls the
primitives, and performs blocking for the user if
available. ·

~ .L..1.ne. Operation

The get_line operation is not supported.

Control Operation

The following control orders are supported.

01/27/81

exactly one
ring zero tty_
no character is

page 29

vtty_ vtty_

get_capabilities
returns information about the capabilities of the
terminal. The info structure is described in the
description of the "get_capabilities" control order
in the crt_ module.

get_break_table
returns the current break table. The info ptr
should point at a break table, declared as (0:127)
bit (1) unal. The i'th bit is set if the character
whose rank (in the Multics character set) is i is a
break character.

set_break_table
sets the break table. The info pointer should point
to a break table as defined by the get_break_table
order, above.

get_control_precedence
returns the current control precedence character.
The info pointer should point to a structure declared
as follows (control_precedence.incl.pl1)

dcl 1 control_precedence_info based,
2 Vtrsion fixed bin,
2 precedent char (1) unal;

version
must be set by the caller
control_precedence_version_1.

precedent
is the control precedence character.

set_control_precedence

to

sets the control precedence character. The structure
is the same one used in the get_control_precedence
control order.

Modes Operation

The following modes are supported. Some modes have a
complement, indicated by the circumflex character (A). For these
modes, the complement is displayed with the mode.

buffered, Abuffered

page 30

In buffered mode, characters are stored by vtty_
until the buffer fills or otherwise deemed necessary.

01/27/81

vtty_ vtty_

In unbuffered mode, are characters are output as soon
as possible.

ctlpfx, Actlpfx
When the ctlpfx mode is on (which it is, by default)
one character, the control precedence character, is
specially interpreted to allow control characters to
be typed in even when the terminal does not support
control characters. See above.

Window System Usage

There should be one attachment of vtty_ for each terminal in
the process. In general, the vtty_ I/O module is not to be
called by users, rather, they should call crt_. The vtty_ module
implements only a subset of the full window_ interface,
sufficient for crt_, as well as several internal window_ entries.
Furthermore, it does not check for errors.

01/27/81 page 31

window_call (wdc) window_call (wdc)

~: window_call

The window_call command allows the us~r to perform window
video operations on a given window from command level.

Syntax as a Command

window_call FUNCTION {switch} {args}

where:

FUNCTION
is the name of the operation to be performed. It may
be chosen from the list below.

switch
is the I/0 switch for the window.
user_i/o is used.

If omitted,

args ~
are arguments :equired by the function chosen. If
the switch is omitted, no arguments may be given.

List of Supported Functions

In the list below, L represents a line number; C a column
number; W a width; (of a region); H a height (of a region). A
string is represented by STRING, and must be quoted if it
contains spaces, and N represents a count. Finally, DL and DC
represent change in line and column, respectively.

position_cursor L C
position_cursor_rel DL DC
home
cursor_left
cursor_right
cursor_up
cursor_down

clear_window
clear_to_end_of_window
clear_to_end_of_lines
clear_region

page 32

N
L C W H

01/27/81

..

window_call (wdc) window_call (wdc}

scroll_window
scroll_region

bell

delete_line
delete_lines
insert_line
insert_lines
delete_char
delete_chars
insert_text

output_raw_chars
assert_cursor_pos

set_window

Syntax as an Active Fynction

N
L C W H N

N

N

N
STRING

STRING
L C

LH CW

[window_call FUNCTION {switch}]

where:

FUNCTION
is the name of the operation to be performed. It
must be chosen from the list below.

switch
is the I/0 switch for the window.
user_i/o is used.

· List of Supported Functions

get_cursor_line
get_cursor_col
get_origin_line
get_origin_col
get_width
get_height

If omitted,

