
. _,.

Towards Unified Process Management MTB-468

From: Benson I. Margulies

To: MTB Distribution

Subject: Towards Unified Process Management

Date: October 31, 1980

This MTB discusses some terminol
ogy that may be useful in considering
the design of Multics' process manage
ment, and suggests the broad outlines
of a unified process management facil-
ity. .

Process management is the cre
ation, maintainance, and eventual de
struction of processes. At this time,
all process management takes place in
the Initializer's process, in several
subsystems. As a result there is
often a certain amount of imprecision
in discussions of just what is happen
ing, and what programs are responsi
ble. The following terms can be used
to describe the existing state of
affairs, and provide an unambiguous
medium for future discussion.

An initiator is a process that
creates one or more other processes.
In the current system, there is only
one initiator process, the
Initializer. It in turn has three
logical subsystems that act as
initiators: dialup_,
absentee_user_Jllanager_, and
daemort_user_manager_.

_Hardcore process management con
sists of those interfaces to the su
pervisor that will create, monitor,
and destroy processes. It is impor
tant to note that that is .all. that
hardcore process management does, for
reasons to appear.

A proce3~ access ~' or just
access type, is a classification of'
processes for access control. It is
reflected in the existing process type
tags. The-"a" processes have a pass
word given at their login, the "mn
processes are requested by a process
that already have given such a pass
word, the "P" processes are created by
a ·third party with privileged access,
and the "z" processes are created by
direct operator intervention.

Other typologies of processes are
·possible and useful. An origin ~
describes the means. by which the
process's creation was requested. In
the existing system we have three:
interactive, absentee, and daemon.
Origin types are distinct from access
types because we might well have sev
eral different mechanisms for creating
processes that are equivalent for ac
cess control. The origin type is not
a user visible issue. It specifies
how the process was created, not how
trustworthy it is or how it
initializes its environment.

enyiroment types classify
processes according to their initial
environment. In the current system we
really only have two of these;
interactive and absentee. The daemon
processes are identical to the
interactive processes from this point
of· ·view. The fact that the process
attaches mr_ to a virtual terminal
instead of tty_ to a physical one

Internal Multics Project working document.
outside of the Multics Project.

Not to be reproduced or distributed

10/31/80 1 MTB-468

Towards Unified Process Management

makes no difference to it. Absentee,
on the other hand, requires the re
trieval of the arguments from the pit,
the establishment of a special cu_$cl
handler, and the like.

The final term to be defined is
Unified Process Mana~ement. Unified
Process Management would be a set of
interfaces that would allow processes
other than the Initializer to become
initiators in an orderly, controlled
fashion. There is good reason for the
emphasis on orderly and controlled.
Today, all load and accounting control
takes place in the Initializer's proc
ess. Any scheme for allowing other
processes to act as initiators would
need to apply those limits to them.

The first question to be answered
about Unified Process Management is
"Why do we want it?" The answer to
this question is, by and large,
modularity. There are two different
modularity problems that could re
solved by this facility. The first is
in the system itself. There are three
subsystems that act as initiators in
the Initializer's process. There has
been some study in moving them to
their own processes, for performance
and other reasons. In theory, at
least, a subsystem like the absentee
facility can be moved out to another
process so long as it h_as access to
read and write the cdt and some other
things.

If, however, we believes that new
initiator subsystems or major
reimplementations of any of the
existing are likely, then the consid
erations change. The debugging (and
maintainance) of these interlocked us
er ring subsystems is already infamous
for its difficulty. The seperation of
function and creation of a secure
common interface could improve that
situation immensely. This is a clas
sic argument of simplicity: the fewer
processes or programs writing into a

10/31/80 2

MTB-468

database, the easier it is to isolate
mistakes. The cdt is an example in
the existing system. All of dialup_
keeps its per-process/channel informa
tion there, as do the various
multiplexor management functions, as
does (from time to time) the message
coordinator. If any of them fail,
they can (and do) leave trash in the
others data.

This argument that the system may
have new needs in the area of process
creation is related to the second
major reason for Unified Process Man
agement: providing process creation
as a service to ordinary user
processes. It has been argued in the
past that Multics process creation is
too expensive for such a thing to be
useful. Certainly process usage along
the lines of UNIX is impractical.
However, I claim that there are appli
cations in which the user must create
processes, and is willing to pay the
price. Consider a TP system, where
the worker and i/o process have to be
created. The current practice of
using absentee for such things is
clumsy. Such processes are kept
around long enough that the cost of
their creation is insignificant beside
the cost of whatever they do for a
living. Unified Process Management
would allow a user to specify the
attachment of the standard i/o
streams, the initial procedure, in
short, everything that is not found in
the pit. This would be a major en
hancement to Multics functionality.

All this is not meant to say that
we should begin an immediate crash
program to design and implement
Unified Process Management. All that
I am proposing is that it should be
adopted as an eventual goal, and that
any development done to related parts
of the system be done with it in mind.
Future MTB's will discuss the actual~
design and implementation of this ~a
cility.

MTB-468

