
Multics Technical Bulletin MTB- tt 76

To: Distribution

From: James R. Davis

Date: 11/14/80

Subject: Menu Software in MR 9

This MTB gives plans for the MR 9 Menu Software. This
software satisifies PFS item 4.5.2. In addition, the Executive
Mail Application (PFS 4.5.3) will be implemented using this
software.

This MTB gives a brief description of the user interface
provided by the menu system, an informal menu application
programmers guide, a description of the commands comprising the
menu system, and discusses the defects of the current system, and
what might be done to correct them.

Send comments to:

The System M continuum >udd>m>jrd>mtgs>menus

by Multics Mail on System M or MIT: JRDavis.Multics

by phone: (617) 492-9 382
HVN 261-9382

Multics Project internal working documentation.
distributed outside the Multics Project.

11/14/80

Not to be

page 1

MTB- ~76

1. CONTEXT

The MR 9 menu system is a re-implementation of the prototype
menu system. The prototype menu system is described in MTB 446.
The chief novelty of the MR9 menu system is that it does not
provide its own video support, but instead relies on the Multics
Video System.

The menu system consists of three related programs.

menu manager
displays menus to users and executes command lines based
on the response. The menu manager command interprets a
menu data segment that describes the menus and actions.

CV Sd
creates menu data segments from menu source segments.

display sd
displays menu data segments,
contents. (This is an auxiliary
for normal operation.)

2. USER INTERFACE

for verification of their
function, not required

The menu system provides a mechanism whereby users can be
presented a "menu" or a list of alternative actions to be taken.
Users are restricted to a choice from the menu. Each option in
the menu is described by a short ''label", and the details of
implementation are hidden from the user.

The menu system is used only on video terminals. When in
use, the screen is divided into two regions or "windows", one
above the other, each occupying the full width of the terminal.
The top window (the menu window) contains a menu, and the bottom
contains output. Occasionally the application will ask a
question in the bottom window, and the user types in a response.

A menu appears to be a list of one or more options, arranged
in one or two columns. Each option has a title or label,
describing the action to be done if the option is chosen, and a
name, which is a single digit or letter, enclosed in parenthesis,
to the left of the title. Above the list of options are the
header lines, which identify the menu (and application), below Alllll

the list of options are the trailer lines, which separate the
menu from the bottom window. Header and trailer lines are

page 2 11/14/80

MTB- '776

optional.

Normally the cursor (whose appearance is terminal dependent,
but usually a blinking box or underline) is in the menu window,
indicating that the menu system is ready for the user to make a
selection from the menu.

The user picks from the menu by typing the name (the letter
or number) of the option, and some action is performed. The
action may invoke a command or exec com, or a new menu may be
displayed, with further choices. As actions are performed, they
may ask the user for input by prompting in the lower window.
Then, the cursor appears in the lower window, and the user types
in the desired information. Typing in the lower window is
through the real-time input line editor of the Multics Video
System thus the erase and kill characters take immediate
effect.

When an action displays a new menu of choices, the old menu
is remembered. The user can return the the previous set of
choices, or to the first menu. In effect, the user is traversing
a tree structure, similar to the Multics directory structure.
(The structure of choices may be more complex than a tree, but
that can be deferred for now.}

Other than selecting options, the user may strike:

~ Function key 1 (Fl).

11/14/80

to get help. Typing Fl followed by the number or
letter associated with a·menu option will cause help
information about that option to be displayed in the
bottom window. If Function key 1 is pressed twice
consecutively, a file giving general help information
about the particular subsystem being used is printed.
Help is only available if the definer of the
application provided it.

Function key 2 CF2).
to return to the first menu.

Function key 3 CF3).
to return to the previous menu.

Function key 4 CF4).
To exit the menu manager. This will cause
manager to return to its caller. This option
disabled, to provide a closed subsystem.

Function key 5 (F5).

the menu
may be

To escape to full Multics command level in
window. This option may be disabled, to
closed subsystem.

the bottom
provide a

page 3

MTB-· 476

CLEAR/RESET CFO).
To redisplay the
screen was messed
software problems.

menu. This option is useful if the
up due to transmission line or

Any character not in the above list is rejected and ignored (the
terminal beeps).

Terminals Without Function Keys

If a terminal does not have function keys, or does not· have
enough function keys, the following sequences may be used instead
of the function keys:

ESC-h
ESC-f
ESC-p
ESC-a
ESC-q
ESC-e
ESC-m

Quit Processing

CHELP)
(First menu)
(Previous menu)
(Abort. Quit the menu manager)
(Quit. Same as Abort)
(Escape to Multics)
(Menu Redisplay)

If the break key is hit while the cursor is in the menu
portion of the screen, no action is taken. If the cursor is in
the bottom window when the break key is hit, whatever action was
being performed is aborted and the cursor is moved into the menu
portion of the screen.

3. APPLICATION WRITERS GUIDE

A Menu Application consists of a menu or menus (in a menu
data segment), and usually some programs (in exec com or some
other language) and help files. The remainder of this section
describes the language used to define menus.

Menus are defined in a simple, keyword based language.
Every statement in the language begins with keyword and ends with
a semi-colon. ~ost keywords are followed by a colon and some
value. Often the value is a quoted string.

Menu definitions consist of global statements, format ""'
statements, and screen definitions, freely mixed, in any order.
Global statements pertain to the entire menu segment. Format

page 4 11/14/80

,.

MTB-'i7G

statements control the appearance of subsequent screens. Screen
definitions describe individual menus and their actions.
Comments may also appear, bracketed with "/*" and "*/" as in
PL/I.

3.1. Global Statements

The two global statements are the 11 Start_up 11 statement and
the "General info" statement.

The Start up statement specifies a command line that is
executed when tne menu_manager is first invoked on the menu.

example:
Start up: "format line ""Welcome to the EXL mail system"'"';
Start=:up: "ec create dir if needed user name ";

The General info statement supplies information about the
entire application being defined. This is the information
printed when the HELP key is struck twice in~succession.

If the string begins with either ">" or " rd >", it is
interpreted as a pathname and the segment indicated is printed.
(rd is an abbreviation for the directory including the screen
object segment).

example:
General info: " rd >ge~eric info";
General-info: "This is a teFse info.";

3.2. Format Statements

Format statements control the
defined menus. Format statements
used in the list of menu items, and
header and trailer lines.

appearance of subsequently
control the number of columns
the appearance and number of

The Columns keyword is followed by the number of columns.
There may be one or two columns, and the default is one.

example:
Columns: 1;

The menu can contain header and trailer lines. These lines
appear above and below the menu, respectively. A header is

11/14/80 page 5

MTB- t/76

commonly used to identify the menu to the user, and a trailer to
separate the menu from the bottom window.

Up
header
One of
way to

to ten headers and ten trailers may be displayed. A
or trailer line must fit on a single line of the terminal.
the limitations of the window system is that there is no
know the terminal width when the menu is defined.

Headers are specified by a Header statement, and trailers by
a Trailer statement. These statements have the same syntax:

where

Header (N) : STRING;
Trailer (N) : STRING;

N

STRING

is an integer from 1 to 10, and specifies the number
of the header of trailer. If it is omitted it
defaults to 1, and the parenthesis must also be
omitted. Lines are displayed in numeric order.

is a quoted string. A null string ("") will cause
that line to appear as a blank line ·except that if
all headers or trailers after a given one are blank, ~
none of these are displayed. That is, the last
non-null header or trailer is the last one to be
displayed.

Header or Trailer statements cannot appear between a
"screen" statement and the corresponding "end" statement. A
header or trailer definition applies to all subsequent screens
unless changed by another subsequent statement.

Header or Trailer statements may contain active function
references, i.e., strings that are bracketed by " "
sequences. Such active functions are expanded at screen display
time, in such a way that any white space in the line is turned
into a single space.

example:
Header (1): "--------MAIL SYSTEM--------";
Header (2): "---reading: valf mbx-name ";
Trailer: "-----------------------------";

page 6 11/14/80

MTB· 'f 76

3.3. Screen Definitions

The screen statement is used to define a menu. The menu
will consist ~f the currently defined headers followed by one or
more columns of options followed by the trailers.

A screen definition begins with a 11 scre1:"11" statement, and
ends with an "end" statement. Everything in between these two
statements defines the screen.

Each screen definition must have at least one option
statement. The option statement specifies the text of the string
to be placed in the menu (the label). The maximum length of this
string depends upon the width of the terminal and the number of
columns.

example:
screen: trial screen;
option: "Initruct the Jury.";

option: "Perjure.";

end;

Each option must have at least one action. The action of an
option can be a transfer to another screen (specified by a
"next screen" statement) or a command line to be executed
(specified by a "handler" statement). If the action transfers to
another screen it may also have a screen start up statement.
Options may also have a help statement.

"The handler Statement

The handler statement specifies the command line to execute
if the corresponding menu option is selected.

example:
handler: "ls -a -sort name";
handler: "discard_output dprint segs *.info 11 ;

The next screen Statement

This statement is used to indicate to the menu manager that
a new menu is to be displayed whenever this option is selected.
The keyword "next screen" must be followed with the name of

11/14/80 page 7

MTB- 'f76

another screen defined in the menu definition segment.

example:
next_screen: dir_screen;

The screen_start_up Statement

The screen start up statement is used to specify a command
line to be executed before the new menu is displayed. Often
several options will use a common next screen. This statement is
used to customize the environment -before the next screen is
entered. For example, it can be used to set variables which are
effectively input parameters to the handler. Another use of the
screen start up is to display information in the bottom window
that can be Teft there after the new menu is displayed. •

example:
screen_start_up: "setf mbx-name user name .mbx"

The help Statement

The help statement
print if the help function
cursor is in the menu. As
value of this keyword may
a file.

example:

specifies the text of the message to
key (or. equivalent) is input while the
in the "General info" statement, the
be a literal string or the pathname of

help: "lists all files containing .named string";
help: " rd >string-search-list.info";

3.4. Returning Responses

One of the most powerful features of the menu system is the
ability of the menu writer to specify strings to be returned to
the request loop of an interactive subsystem. This feature must
be carefully used, since the writer must supply full and correct
request strings for a (possibly changing) subsystem. There is no
provision for error analysis or recovery.

A subsystem invoked in this manner must either not prompt,
or there must be a way to shut the prompt off, otherwise the
subsystem prompt will appear in the lower window.

It is extremely desirable that the subsystem have an
"execute" request allowing active functions to be evaluated from
the request loop, with their values returned into the request
loop, so that the string returned can Qontain references to

page 8 11/14/80

MTB- Cf 76

variables and user supplied valueg.

When a subsystem is used in this way, the menu manager is
said to be in "menu it.put" mode. In this mode, the I/O switch
user input is attached tv a special I/O module which returns the
strings defined in the menu. These strings are defined by the
"response" keyword.

The "response" statement specifies the string
to the subsystem. The value after the keyword
string, which is returned to ~he subsystem.
anything meaningful to the subsystem.. The example
from a mail reading menu.

example:

to be returned
is a quoted

It can contain
below is taken

response: "list ;: : e response ""string to search for:"" /";

When an option has a next screen, menu manager examines the
screen specified. If it cont::dns any "response" keywords, then
the "menu input" mode is entered. It is. assumed that the handler
of the selected option is about to invoke an interactive
subsystem. The subsystem must obtain its input only by iox
get_line calls on user_input.

Unlike commands, subsystems usually only return when some
explicit "quit" request is given. This can be a problem, because
a user of a menu application does not know that a subsystem is
being used, and cannot be expected to provide a quit request when
finished with the subsystem. The menu user expects to exit with
one of the function keys (F2, F3, or F4, or the equivalent).
Therefore, the writer must supply a string which, when returned
to the subsystem, will cause it to return to the command
processor. This is done by the "quit" keyword. When the user
signals his or her desire to exit the menu, this string is
returned to the subsystem, causing it to return to the handler
which originally invoked it. If this keyword is not supplied,
the subsystem is exited by a non-local goto, which may or may not
have desirable effects.

example:

11/14/80 page 9

quit: "quit -force";

3.5. Example

Start up: "format line ""Sample Application. 111111 ;

General info: "Th'Is is a terse info.";

Columns: 1;
Header (1): 11 --- Sample: date ---";
Trailer: "----------------------";

screen: top;
option: "List Files";
handler: "list -sort -name";

MTB-'-/76

help: "shows list of all files, in alphabetic order";
option: "Delete File";

handler: "delete response ""What F 1e to Delete:"" ";
help: "asks you for a file name, then deletes it.";

option: "Edit a file using TED";
handler: "ted -pn response ""File to Edit:"" ";

option: "Read Your Mail.";
handler: "read mail -no prompt";
next screen: read mail menu;
cleanup: "quit -force"T
screen start up: 1111 ;

end· - -
'

Header: " READ MAIL ---";
screen: read mail menu;
option: "Li~t Contents.";

response: "list all";
help: "Prints a list of all messages in your mailbox.";

option: "Print a Message";
response: "e mm$bottom window input; e setf msgno e

response Msg: ; e mm$menu inprrt; print e valf msgno ";
end; -

page 10 11/14/80

MTB-~76

4. ASSISTANCE FOR APPLICATION PROGRAMS

Programs will run without modification under the menu
system, but a more pleasing user interface can be created by
taking advantage of the menu system. bThe first principle of a
menu program is that all its I/O takes place in the bottom
window. The bottom window has limited size, and is cleared
before each action is performed.

There are several entry points into the menu manager command
which may be called from application programs (exec corns or PL/I
procedure) to regulate use of the screen. These entry points
take no arguments, so they may be called as commands or as
subroutines. The entry points are listed in the description of
the menu_manager command.

5. RESTRICTIONS AND DEFECTS

This section gives some of the restrictions and defects in
the MR 9 Menu System, and what might be done to remove or correct
them.

The menu manager command can
Honeywell VIP 7801 or 7200 terminals.
the escape sequences given above must
designed to correct this problem, but

only use function keys on
On all other terminals,

be used. Software has been
is not planned for MR9.

The menu manager cannot use the auxilliary port on any
terminal other than the Honeywell VIP 7801 or 7200. At this
time, there are no plans to add terminal independent support of
auxilliary printer ports to Multics.

The menu system is not fully terminal independent in that
there are restrictions on maximum length of strings (in titles,
in headers and trailers) that depend on line length, and the
writer of a menu has to know the line length when writing the
menu. So a menu written for a terminal whose line length is 80
will fail on a terminal of lesser line length. Solutions to this
problem are under investigation.

Since the bulk of the work of an application is usually
done by exec corns, the usual liabilities of exec com apply. As
it exists today, exec com has no variables, limTted control flow
primitives, no debugging facilities, and no facility for error
analysis or recovery. Some of these problems are being addressed
by MR 9 version II ec.

11/14/80 page 11

MTB-'i7b

The worst flaws of the menu system pertain to its use in
"menu input" mode. This mode can only work when the writer
provides complete and correct strings to be returned to a
subsystem. A subsystem request language is not intended to be a
programming language. The writer must anticipate every response
the user might need to give. There is no provision for orderly
error analysis or correction. This problem is being considered,
and a solution will be offered in a future MTB.

The error messages given by cv_sd are too terse.

Another problem is that Multics users have the habit of
striking RETURN after their input to Multics. The menu system
does not need the RETURN, since it operates in breakall. If the
action selected prompts the user for some value (and this is
common), the RETURN typed by the user will terminate the request.
This problem cannot be fixed without drastic changes to Multics
Communications Management.

6. POTENTIAL EXTENSIONS

As the menu system has been used, more and more requests
have come in for additional features. These are listed here.
None are planned for MR 9. Discussion of these features
continues in the continuum meeting cited above.

The ability to transfer to a menu from any other menu
(rather than in a strict top-down tree traversal). Users
don't like the delay in travelling down the tree structure.
The issue here is how the user can specify the desired menu.
The most common proposal is that the user supply the
"pathname" (in the form of the names of the intermediate
menu selections). This clearly won't do, since the user
must then remember strings of digits with no inherent
meaning, and also makes any change to the menu possibly
"incompatible". Another proposal is that the user su~ply
the name of the screen. This suffers because the screen
names are not chosen (by the writer) for mnemonic value.
In addition, there may be several ways to get to a given
menu (that is, there may be several leaves with the same
name).

Menu data segments should be full Multics object segments.
This would allow use of commands such as
"date time compiled'', would make it possible to find menus
(as "entrypoints") in other segments.

page 12 11/14/80

MTB-'f76

Menu segments should be found using a search list.

Help files should be foµnd using a search list (possibly the
info search list). There is no reason to restrict the
writer to absolute pathnames.

The menu_manager command should be able to interpret menu
definition language, because it is often easier to debug
interpreted languages than compiled ones.

The menu definition language needs some additional features.
One is a "screen wrap up" keyword, which would give a
command line to be executed when a screen returned. This
might close a data base, or unlock a lock. The "quit"
string is not sufficient, since it is only available for a
subsystem in "menu input" mode, and is executed by a
subsystem, before the subsystem returns.

The question mark character should be accepted as a helr
~haracter.

It has been suggested that a form of menu manager be
available that works as the "answer•i command does. This
command could trap command query , and display answers
appropriate for that question: -

It would be very desirable to make menu selection available
to all commands and exec corns. This could be done•by a
command/subroutine/AF that took as argument a menu
description and returned a description of the item chosen.
For command usage, the "response" string might be returned.

One limitation of the menu system is that menus have fixed
contents. A command or subroutine interface for menu
selection would be more valuable if it were easy to build
menus "on the fly". As is, the options are embedded in the
quoted strings in the source language.

11/14/80 page 13

MTB- '176

1. DOCUMENTATION

MPM style documentation follows. (This documentation
describes the Menu System as planned, not as it is today.)

page 14 11/14/80

menu_manager (mm) menu_manager (mm)

Name: menu_manager, mm

The menu manager command interprets menu data segments. It
requires the-Multics Video System in order to run. This command
may not be invoked recursively.

Usage

where

menu_manager path -control_args

path
is the pathname of the screen object segment (created
by cv sd) to be used.

control args
ire chosen from the list:

-disable STR
prevents the user from using a specified feature of
the menu manager. STR may be "escape" (or "e") or
"abort" ("a"). This option may be. used more than
once in a command line.

Utility Entry Points

There are several utility entry points to menu manager that
enable the user of menu_manager (i.e., the subsystem-designer and
implementer) to control some of the actions taken. These are
described briefly below. These entry points may only be called
while there is an invocation of menu_manager active.

Entry: mm_dirty_screen

This entry informs the menu manager that the contents of the
screen have been changed in a way that menu manager has no
control about. The menu manager program will therefore redisplay
the upper window the next time it gains control. This entry is
useful with programs such as Emacs which manage the entire
screen.

11/14/80 page 15

menu_manager (mm) menu_manager (mm)

Entry: mm_clear_bottom_window

This entry clears the bottom window.

Entry: mm_defe~_clear_of_bottom window

This entry prevents the contents of the bottom window from
being erased for one redisplay of the menu. Usually, the bottom
window is cleared whenever the menu changes. This entry point is
useful when some information has been displayed that will be
useful in a decision to be made by the user. For· example, the
start up for a mail reading application can display a summary of
mail,-call this entry point, and cause it to be preserved so the
user may see the full list while choosing which message to read.

Entry: mm clear screen for use
- - T -

This entry expands the bottom window to fill all but the top
line of the screen. The expanded bottom window is available for
output. When the handler returns, menu manager pauses (by
prompting for a NEW-LINE), then restores the original window
sizes, redisplaying the original mequ, and clearing the bottom
window.

Entr~: mm_bottom_window_input

This entry changes the mm's input mode to conventional
input. It is used to escape from menu input mode. If the
application itself wishes to query the user, Tt must f.irst ask
the menu_manager to exit menu_input mode, otherwise the
application will also read from the menu. This can be done by
calling the entry point mm bottom window input. For example, in
a mail reading application,-the user might be prompted for the
number of a message to delete:

example:
response: "e mm bottom window input; delete e response ""What

message?""-" - -

page 16 11/14/80

menu_manager (mm) menu manager (mm)

Entry: mm_menu_input

This entry changes mm's input mode to menu input. It is
used only t9 undo the effect of a call to mm bottom window input.
In the example above, mm menu input should be called after the
response active function, so-that the subsystem will continue to
read "from the menu".

Entry: mm_enable_local_printer

This entry is called to enable a "local printer" that may be
attached to the video terminal being used. The local printer may
be ~sed for output only. The printer should be attached to the
"auxilliary" port of the terminal, so that it may be controlled
from Multics.

The call to enable the local printer should be made prior to
establishing the terminal characteristics for the terminal (such
as line length, tabbing, etc.). When the output is completed,
mm disable local printer should be called to return the terminal
to- its o~iginaT state. If any terminal characteristics were
changed to do the local printing, they should be reset after
calling mm disable local printer. This entry may only be called
if the terminal used is a-Honeywell VIP7801 or VIP7200 with a
local printer.

Entry: mm_disable_local_printer

This entry is used to reestablish the video terminal as the
primary input and output device of a multi-device workstation.
See the description of mm enable local printer for a description
of its use. - - -

11/14/80 page 17

CV sd CV sd

Name: cv sd

The cv sd command compiles a screen definition source
segment creating a screen data segment if no errors are found in
the source.

Usage

cv sd path

where path is the name of the screen definition segment to be
used as input. The suffix "sd" is assumed but need not be
specified. The output segment has the same name as the input
segment, with the- suffix removed.

page 18 11/1~/80

' .

display_sd display_sd

Name: display_sd

The display_sd command is used to generate a listing of the
contents of a screen definition data segment (created by the
cv sd command). The output of this command is not suitable for
input to the cv sd compiler.

Usage

where

display_sd path -control_args

path
is the pathname of the screen data segment.

-control args
can be chosen from the follwing:

-brief, -bf
produces an output that lists the name
and the labels defined in each screen.
default.

-long, -lg

of each screen
This is the

produces output which resembles the appearance of the
menu as displayed. This option produces
substantially more output than -brief.

