
- Multics Technical Bulletin

From: Benson I. Margulies

To: MTB Distribution

Subject: Unified Process Management .5:
Cleaning Up Process Initialization

Date: January 2, 1981

This MTB describes some changes to
process initialization that clean up the
existing mechanisms and improve their
efficiency.

All comments are solicited. The
author can be reached by Multics mail as
Margulies @ MIT-Multics, or
Margulies.Multics on System M.

This MTB is the second in a series
that began with MTB~468, and uses
terminology def:..ned in that document.

MTB-485

,.. Multics Project internal working document. Not to be reproduced or
..J distributed outside of the Multics Project.

01/02/81 MTB-485

· Cleaning up Process Initialization MTB-485

This MTB is about the pathway from cpg_ in the Initializer's
process to act....Proc and init_proc in ring zero to the init_admin_'s
and real_init_admins_ in the user ring. These programs are old.
They have· code that was put in for efficiency when they were
originally coded, but which now is useless or worse than useless.
The separation of function amongst the various programs is not very
good, and a better modularization would make the implementation of
other facilities, like process management, much easier.

The current scheme for process creation is as follows: the
answering service calls cpg_ in the Initializer's process. Cpg_
calls act_proc with a template PIT, and act_proc creates the process
directory, creates a PIT, fills it in, and creates the ring zero
address space segments. Act_proc then calls pxss to start the
process. When the process starts, it runs in init_proc which
determines the initial user rign procedure and calls out to it.

Cpg_'s contract is to create a proce$s given all of the
information that will eventually be in the user's PIT. It must fill
in all the user-ring data bases and call hardcore to create the
Pddress space and start the process. Its primary concern, then, is
the process directory of the new process. Today.it is hardcore that
creates the process directory. This is because the process dir
entry name is developed from the process id, and the process id
includes the offset of the APTE in tc_data. Act_proc, the responsi
ble hardcore program, generates its half of the process id after
allocating the APTE. The other half of the process id is a number
provided by cpg_, from a pseudo-clock in the answer table.

It is proposed to make the generation of process id's a
supervisor function. In the current implementation the supervisor
trusts the uniqueness of a process id partially supplied by the user
ring for all its locking, but generates a guaranteed unique lock id
for the user ring's locking! Act__proc will use a pseudo-clock in
internal static for the unique portion of the process id.

It is important that act_proc not create the process directory.
Only some of its contents are managed by hcrdcore process manage
ment. Others contain information passed fron the initiator to the
new process. The PIT is the case in point. The data in the PIT is
of no interest to act_proc. Yet, in the current scheme, any change
to the PIT format potentially requires changing cpg_, act__proc,
init_proc, and then the init_admins_ and user_info_. Allowing cpg__
to create the process dir would allow it to create the PIT, and
changes to its contents could be made without having to change
hardcore programs.

There are two ways that cpg__ could create the process directo
ry. One is to create it with a name other than a representation of
the process id. An alternative is to call hardcore process
management to get a process id, then create the directory, and then
call hardcore to create the address space and start the process.

01 /02/81 2 MTB-485

Cleaning up Process Initialization MTB-485

The first alternative is cleaner. The directory could be named
following the process creation time, which is available in the user
tables to programs that want to find process directories. This
would break private tools that find process directories from process
id's. A new interface will be provided that converts a group id to
a process id, which will isolate these tools from the details of the
implementation of process id's.

Init_proc is the other ring zero program in the direct path of
process initialization. Today it looks in the PIT to find the
initial procedure. It has an entire reimplementation of
expand_pathname_ in lire to expand the string from the PMF. It
would be simpl~r to have cpg_ expand the initproc keyword in the
PDT. This data could be passed to act_proc, and left in the pds.
This would be consistent with the existing policy that ring zero
looks at the pds, and the user ring looks at the PIT.

Once act_proc and init_proc's interests in the PIT is removed,
the data structure in the PIT can be cleaned up. This structure is
currently a rat's nest. It has aligned character strings that
should be unaligned, single aligned bits lying all over the place,
and is not at all extensible. A reorganization would make changes,
like new PMF keywords, much easier.

The next step in the chain are the init_admil'L.'s and
real_init_admins_. Today, there· are three apparently distinct alm
programs (user, absentee, and daemon init_admil'L.), each of which
calls a pl1 program (the corresponding real_init_admil'L.). This was
done for efficiency, as it avoids keeping the stack frame of the pl1
code that does the work around for the life of the process. The
same effect is now available with noI"L.quick internal procedures in
pl1.

It is proposed to combine the init_admil'L.'S and
real_init_admins_ into one pr9gram. Right now they are nearly
identical. User_real_init_admil'L. and daem.oI"L.real_init_admil'L. are
identical. Absentee_real_init_admil'L. establishes a cll._$cl hook, and
find the arguments. The other d;fference in absentee is the cpu and
spending limit control established by absentee_real_init_admil'L..
Current plans call for this responsibility to be taken over by the
absentee_user.JDanager_. Even if it remains, it is a trivial
deviation from the actions of interactive processes. It seems
likely that the different environment types offered by the standard
system are likely to get more alike as time goes on, rather than
more different. Thus from a maintenance point of view it is
reasonable to collapse the existing three nearly identical programs
into one. This is also a performance enhancement; the major
performance problem of Multics is paging, and the current situation
has three nearly identical set~ of pages that have to come in to
start the three different types of processes. I . measured the cpu
and page faults for a version of user_init_admil'L. using a nol'L.QUick

01/02/81 3 MTB-485

Cleaning up Process Initialization MTB-485

internal procedure instead of the alm/pl1 design, and found signifi
cant savings.

Another programming fossil in the real_init_admins_ is the
initialization of the three basic SYlL attachments. Currently the
program ios_$ios_quick....init is called. It calls syILattach._ direct
ly instead of ioX.:....$attach. I have metered a version of
user_init_admiIL, and found that this is not significantly cheaper
than doing attachments with iox_ in line. So there seems to be no
point in preserving this mechanism. We should remove it, if only to
get reasonable error messages when the attach¥tents cannot be made.

All the work described above is perhaps three person-days of
programming. There would be another two days.to run development and

I
debug. An interface to fetch the creation time' from the user table
would be another day. The whole project could be budgeted at a
weeks's work. Documentation would consist\of updating the SWG
description of process creation, which could be done from this MTB,
or the developer could take another day and rewrite the SWG text.

01/02/81 4 MTB-485

-:- ·- -._ ..

