
MULTICS TECHNICAL BULLETIN MTB-522 page 1

To: Distribution

~From: T. H. Van Vleck

Date: April 10, 1981

Subject: Hexadecimal Floating Point

SUMMARY

This document describes how to support Hexadecimal Floating
Point (HFP) in Multics. The best way to provide this support is:

1. Support HFP arithmetic in FORTRAN only.

2. Have all floating arithmetic in a (separately compiled)
program be the same mode. \

3. Modify system runtime routines to support I/O and
debugging.

To provide this level of HFP support properly
substantial effort. The resulting system will
opportunities for user errors which lead to garbage
but not all of these errors can be checked for.

will involve
provide many

results; some

4. If HFP programs are run on a non-HFP CPU, the programs
might appear to work but generate garbage answers.
Detect this situation and cause an error stop.

5. Attempts to mix HFP and non-HFP programs in the same
process may lead to errors in the interpretation of
numbers. Again, the user's job will appear to work but
the results will be wrong •. The ability to mix modes,
though, may be needed by sophisticated system builders
and by programmers converting data from one mode to the
other. Do not forbid mixing or even attempt to detect
all cases.

6. Mixing HFP data and non-HFP programs, or vice versa,
will also lead to garbage answers. Do not attempt to
detect or prevent this problem.

These limitations will lead to problems and complaints and will
increase the developers' support workload.

Multics Project internal working documentation. Not to be
.... reproduced or distributed outside the Multics Project.

MULTICS TECHNICAL BULLETIN MTB-522 page 2

TECHNICAL ISSUES

Need for HFP

The need for HFP is discovered when comparing Multics
language implementations with those of other vendors. Sometimes
this comes about when a site attempts to convert programs from
other machines; other times that the need for HFP is noted are
when benchmarks or system proposals are being prepared by
Marketing.

The Multics machine currently provides single and double
precision binary floating point with a maximum exponent of 2**38.
IBM machines support exponents of up to 2**75. If an otherwise
valid program is converted from an IBM machine to Multics, it may
encounter overflow or underflow conditions on Multics which it
did not see on the IBM hardware.

The situation with other vendors' hardware is similar.

User sites have requested that we support HFP by SCP and
RPQ.

Functions Required for HFP Support

Supporting
functions:

HFP on Multics

o Program compilation
o Execution
o Debugging

requires providing these

Furthermore, these functions must be provided in a way which is
consistent with the rest of Multics facilities. Users have been
led to expect a high degree of uniformity and consistency in
system interfaces, and wish to be able to combine previously
written programs, new programs, and system utilities to build
complex subsystems without encountering implementation restric
tions. For example, forcing the user to use a special debuggger
for HFP instead of the standard probe command would be seen as an
unreasonable limitation.

If we do an incomplete job of HFP support, we will regret it
later: users will discover the deficiencies in our support
sooner or later, perhaps at times inconvenient to them, and will
request or demand that we complete the job, with much ill feeling
on both sides.

The. worst possible failure mode is one in which the system
appears to accept the user's commands, but produces incorrect
results without any indication of error. Even if these incorrect

MULTICS TECHNICAL BULLETIN MTB-522 page 3

results are caused by a user mistake, properly warned against in
some manual or info segment, the user can be expected to request

,_that we "fix the system" so that the problem will be detectd
· automatically.

Hardware Implementation of HFP

The DPS8/70M and ORION processors support HFP arithmetic as
described below. This feature was first designed for CP-6, for
XDS compatibility; some design choices were made so it could be
retrofitted into Current Product Line (CPL) processors.

DATA REPRESENTATION

HFP data is stored in the same number of words as Binary
Floating Point (BFP) data, and the division of the word into
exponent and mantissa is the same. However, the exponent for an
HF? number is a power of 16 instead of 2, and the mantissa is
therefore not always normalized to have a 1-bit in bit 9:
instead, a normalized mantissa has its leftmost 1-bit somewhere
in bits 9-12. This change loses a few bits of precision,
compared to BFP, depending on the value of the exponent. (Called
"wobbling precision" by numerical analysts.)

,..AMBIGUOUS OPCODES

There are no new operation codes assigned to cause the CPU
to perform HFP operations on HFP data. Instead, the old BFP
opcodes are used, and mean either BFP or HFP operations depending
on the state of a CPU indicator. This opens the possibility of
this indicator assuming a value which is incorrect for the data
being operated on, either because the indicator gets set wrong,
or because the data is not of the type appropriate.

NEW INDICATOR

The indicator value which selects whether BFP or HFP
arithmetic will be performed is part of the Indicator register of
the CPU. The HFP flag is bit 32 of the Indicator register. User
programs can change the state of the HFP flag by using the LDI
and RET instructions.

CPU MODE REGISTER

A new bit in the CPU mode register controls whether the
Indicator register specification of HFP will be honored or not.
If this bit is zero, the CPU will never do anything in HFP mode,

_..regardless of· what the user program specifies. If the bit is

MULTICS TECHNICAL BULLETIN MTB-522 page 4

one, then the CPU will switch between BFP and HFP modes at user
request.

Possible Scopes of HFP

This section describes implementation choices available to
us in providing HFP support.

ONE LANGUAGE OR SEVERAL

It is not necessary to add HFP support to every Multics
programming language. The need for HFP is presumably greatest
for FORTRAN programs, since this is where scientific calculations
involving floating point are most common. PL/I support of some
kind might be necessary in order to deal sensibly with FORTRAN
variables in HFP encoding, since the FORTRAN compiler, debuggers,
and runtime support are written in PL/I. We have had problems in
the past with conversion of APL programs from other systems, so
HFP support for APL should be considered too.

PER RELEASE

One way to provide HFP support is to decide that all
floating point data in Multics is now HFP and must be operated on
by HFP instructions. This change could be made as part of a
particular release of Multics; all software which harl t~ know of
the difference would be installed simultaneously at the site in a
massive flag day, all programs using floating point would be
recompiled, and all old BFP data would be converted in place to
HFP format. (This was the approach taken by CP-6. They had no
conversion problem because they never used BFP.)

Since not all Multics sites run the same release, we would
ridve co invenc conversion procedures for the export and import of
floating point data and programs between sites. (Programs need
conversion even though the opcodes are the same, because con
stants in the programs will have different encodings in BFP and
HFP.)

Even worse, some sites will be running Multics on CPL
hardware, which does not support HFP. If such a site obtains a
program which depends on HFP, and tries to run it, it will
silently produce wrong answers. The user program can switch the
HFP flag on and off all it wants, but all numbers will be
interpreted as BFP; in particular, program constants will be
given the wrong interpretation. This is unacceptable behavior.
To prevent it, the simplest way is to modify the system runtime
for all languages to check whether a program being invoked uses
HFP, and arrange that compilers producing object segments mark
those that need the HFP feature. A flag in, say,

MULTICS TECHNICAL BULLETIN MTB-522 page 5

wired hardcore data indicating the presence (and enabling) ·or the
HFP feature would then be checked at every program invocation.

~(This check imposes a performance penalty on every program in the
system.) If a program which requires HFP is executed on a
non-HFP CPU, an error condition is signalled.

The file conversion programs mentioned above will be
extremely difficult to construct. Floating point numbers are
indistinguishable from other bit strings when stored in a file;
in general, only the programmer of the application program which
created a file can produce the program which converts the
floating point numbers in the file. The file conversion programs
must be restartable, in case there is an interruption of some
kind while a file is being converted; and they must be kept
around forever, since data files too will be traded between sites
and retrieved from dump tapes. Worst of all, we have no standard
place to indicate that a file contains HFP data, so no standard
check against data misinterpretation can be introduced.

PER SITE

A variation of the per-release scheme allows a site to
choose whether to have BFP or HFP data at release change time.
Communication between sites still requires knowing whether con
version is required and might require conversion programs. But
sites which did not choose to use HFP would not have to go

~through the massive data conversion in order to put up the
· release with HFP support.

Both the per-release and per-site approaches minimize the
possibility of ambiguous data; if a number is interpreted as
floating point, the correct value for the HFP flag is well known,
and is a constant at the site. But the possibility of
transmitting HFP data and programs to ·a non-HFP site is present
in this scheme as well; therefore, we need to detect mismatches
between desired and supplied encoding, and if there is a
mismatch, we need file conversion programs.

Allowing more than one kind of floating point number
involves Multics Development in dual maintenance of one form or
another. There will be parts of the system used only in HFP, and
others only for BFP, and these parts will both require checkout
and maintenance. If the per-site option is chosen, separate
checkout systems will be needed for maintenance.

PER PROCESS

If some processes wish to do BFP arithmetic and others HFP,
then the HFP flag must be set correctly for each process, and the
system must not pass the flag inadvertently from one process to

_..another. The supervisor uses floating point arithmetic in a few

MULTICS TECHNICAL BULLETIN MTB-522 page 6

places itself, so in fact we must implement per-ring management
of the HFP flag to prevent an outer ring from interfering with an
inner ring's calculations.

If all programs in a process are supposed to be one flavor
or another, we can provide consistent I/O routines and compilers
by the search rule mechanism, but we still must check to prevent
the introduction of a subroutine of the wrong flavor into a
process, because the search rule mechanism is often the source of
user confusion.

The file conversion problem still exists in this case. We
need ways to discover whether conversion is needed, and means to
do the conversion. If a user wishes to combine some subsystems
using BFP and some using HFP in the same process, or wishes to
read some data files containing BFP data and other data files
containing HFP data, he encounters severe problems.

The per-process approach is the one chosen by GCOS. They
support FORTRAN HFP compilation and execution, and produce an
error message at runtime if an attempt is made to combine HFP and
BFP object units into a core image. The FORTRAN code manipulates
bit 32 directly, saving and restoring it around external calls;
user subsystems may call special routines to convert numbers and
to manipulate the HFP flag.

If we choose the per-process option, a site could use the
Access Isolation Mechanism (AIM) to separate HFP programs from
BFP, by placing all users in either the "binary" or "hex"
compartments. A user from one compartment is prevented from
reading data created in the other without the intervention of the
system security officer. Unfortunately, this
compartmentalization is very strong; it includes all data, not
just floating point numbers, so that the compartments are unable
to communicate by mail, for example.

PER PROGRAM

The next most general situation is one in which an individu
al program chooses HFP or BFP operations for all floating point
variables in the program. This approach allows the programmer to
choose the type of data representation most appropriate for the
calculation being performed, and assures that the operation of a
program is not interfered with by the choice of environment it is
run in (since all Multics processes would be alike in. their
ability to run either HFP or BFP). This proposal treats HFP data
as simply one more data type, as different from BFP as integer is
different from floating point.

In order
flag changes
intentions of

to provide this level of implementation,
state dynamically in a process depending

the compiled code. Since the HFP flag

the HFP
on the
can be

MULTICS TECHNICAL BULLETIN MTB-522 page 7

changed by slave mode instructions, this convention is fairly
easy to implement. A management convention needs to be defined

,...which will be observed by all programs: one possibility is to
set this flag to its required value whenever its state was
unknown, or known to be incorrect.

,...

The current Multics PL/I call operator sets the HFP flag to
zero when a called procedure returns. Multics convention is to
save and restore indicators across a call, but PL/I knows that
indicators=O will be just as correct after a call and loads with
zero as an optimization. The same is true for FORTRAN.

Conversion of whole packages to Multics from other vendors'
systems is straightforward under this scheme; but combining
subsystems still raises the possibility of attempting to combine
HFP and BFP programs in the same process. Communication between
such programs via file is no different from the situations
already discussed; but now we face the additional possibility of
communication across calls. If all data in a program is either
HFP or BFP, there is no way to write a valid program which takes
one kind of variable as argument and does the other flavor .of
arithmetic, or passes the other flavor as argument to a
subprogram. Through carelessness or misunderstanding, however,
users may mismatch arguments across· a call; and Multics does not
now check parameter matching across calls. (MTB-094 describes
how runtime parameter checking could be implemented. HFP would
make it even more desirable.)

PER VARIABLE

The most general approach is to allow the programmer to
choose the data representation for individual variables within a
program. A single program can then perform either HFP or BFP
arithmetic as necessary, according to declarations under control
of the programmer. Implementation of this level of generality
requires no additional runtime complexity over the per-program
scheme, except that the individual language compilers will need
modification to permit the expression of the programmer's wishes.
It is possible that we may choose to provide per-program HFP
support for some compilers, per-variable in others, and only BFP
in still others.

Per-variable support allows the programmer to create a
straightforward program which adapts HFP and BFP environments to
each other. Without this support, a user cannot write a file
conversion program without calling on some external subroutine.

Per-·variable
extension. Sites
language features

_.,exporting Multics
· other machine.

support represents a non-standard language
which wished to encourage the use of standard
only, such as Avon, would find difficulty in

programs which used this special feature to any

MULTICS TECHNICAL BULLETIN MTB-522 page 8

CONCLUSIONS: SCOPES OF HFP

Given the advantages and disadvantages of each possible
scope of implementation, it seems best to choose the per-program
scope. Per-release and per-site are ruled out by maintenance
issues. Per-variable is too much work inside the compilers.
Per-program is about as much work as per-process and fits more
naturally with the rest of the Multics system.

Compiler Changes

This section discusses the changes necessary to each lan
guage if HFP support is desired for that language. If we decide
not to support HFP for a particular language, we may still need
t'C)"make some modifications to the runtime, or perhaps even to the
compiler, in order to ensure that programs continue to run, such
as resetting the HFP flag.

FORTRAN

Declaration of HFP Variables

If per-program support of HFP is chosen, the FORTRAN
programmer needs a way of expressing his intention for the
arithmetic to be performed by his program. A compiler control
argument and a %options directive are likely to be desired to
permit specification.that a whole subroutine operate in HFP.

If per-variable support is desired, syntax
FORTRAN language to distinguish between BFP
needed, and intrinsic functions to convert
repre~entations will also be required.

Constants

extensions to the
and HFP will be

between the two

Floating point numbers in FORTRAN programs have to be
converted to HFP for use in HFP arithmetic. To provide this
facility, the compiler front-end must know that the constant
should be stored in HFP format, and have a conversion program
which it can call to produce this constant. The listing
generator probably needs the inverse function. Since the compil
er is written in PL/I, these conversion programs must be
available in PL/I. The current FORTRAN compiler performs this
conversion inline, by converting a fixed decimal value to a
floating value; to support HFP, we must either recode this and
use per-variable HFP support in PL/I, or call an external
routine.

MULTICS TECHNICAL BULLETIN MTB-522 page 9

Currently,
syntax; it may

~·epresentation
chosen.

the data type of a constant is obvious from its
be necessary or desirable to invent a FORTRAN

for HFP constants if per-variable support is

Compile-Time Arithmetic

The PARAMETER statement does its compile-time arithmetic by
calling special FORTRAN routines to perform the interpretation of
individual operators. Performing these operations in HFP is a
matter of creating a additional set of HFP subroutines, if
per-program support is chosen. Per-variable support would
require additional complexity because of mixed mode operations.

Constant folding done as part
is now done by in-line PL/I code.
per-variable HFP support in PL/I or
compiler to use subroutines.

Precision of Intermediate Results

of compile-time optimization
To do this in HFP requires
recoding of this part of the

If per-variable HFP support is chosen, the compiler must
choose how to compile mixed-mode arithmetic. It is not clear how
we could discover whether the user would prefer additional

_precision or a bigger exponent, since this choice is data
,..!ependent; so the compiler must make an arbitrary choice.

Code Generation

The object segment must be marked in some way to indicate
that it contains· HFP operations, no matter what strategy is
chosen. (One way to do this is to use new entry and call
operators which check for the presence of the HFP feature and
flag the stack frame so that runtime routines know HFP is being
used.) In any case, the code generator may be called upon to
indicate HFP object segments, argument descriptors, or input
parameter lists.

If per-variable support is chosen, the .code generator must
manage the HFP flag as part of the machine state, and must be
able to perform type conversions between BFP and HFP.

I/O Package Changes

The FORTRAN format conversion routines need to know what
kind of data encoding they are working with. Current I/O
statements pass a few bits to fortran io describing what kind of

_.storage values are being manipulated; this field could be

MULTICS TECHNICAL BULLETIN MTB-522 page 10

extended to flag HFP, or a per-stack-frame flag could be set at
program entry.

PL/I

Declaration of HFP Variables

If per-program support of
needs a way of expressing his
performed by his program.
statement and a new compiler
to do this.

HFP is chosen, the PL/I programmer
intention for the arithmetic to be
A new option on the procedure

control argument are the right way

Per-variable support requires extension of the PL/I language
with a new attribute, orthogonal to base, scale, mode, and
precision. This attribute has to be supported in all parts of
the language, and builtin functions created to make conversion
explicit.

Intermediate Results

Per-variable support requires the same sort of choice as was
made for FORTRAN, although the semantics of the implementation
would be made explicit, as is now done for the precision of
intermediate results.

Code Generation

Because of the complexi~y of the PL/I language, any change
which affects code generation probably cannot be added to the
current compiler. Per-variable support falls into this category.
Less complex changes, such as per-program support, can probably
be done.

IIO Package Changes

The changes here are similar in magnitude to those for
FORTRAN.

APL

Prospective customers trying out our APL have encountered
problems with the smaller exponent provided by BFP. APL
currently stores all floating values internally as double preci
sion, so the best way to improve APL arithmetic is probably to
change all numbers to HFP with some release. This could be done
with an in-place workspace conversion invisible to the user;

MULTICS TECHNICAL BULLETIN MTB-522 page 11

minor problems might occur if users have PL/I external programs
called by APL. Most of the work to convert APL to HFP involves

_.modifying the I/O package and the operators. Since the APL
Lnterpreter is written in PL/I, it would be convenient to have
HFP support in PL/I, but it is not strictly necessary. Paul
Green points out that there may be some hidden problems with APL
oerators which work on floating point, such as the matrix
inversion operator, which may not be numerically stable over the
expanded domain.

BASIC

We have had problems with precision in BASIC in the past,
which led us to invent double precision BASIC. If we wish to
improve the exponent range in BASIC, the situation will be like
that for APL, except that "random numeric" files written by user
programs will need conversion; the situation is like that of
FORTRAN in that these files have no type indicators.

CUSTOMER-MAINTAINED COMPILERS

Several sites have produced their own compilers for lan
guages not provided by Honeywell: there are several versions of
PASCAL, an ALGOL-68, a SNOBOL-4, and probably many others. Our
HFP support strategy should not break these compilers or their

~enerated code. Furthermore, some of these compilers may wish to
support HFP in a manner compatible with the solution we choose
for Honeywell software; so the standard we choose should be
extensible to other compilers.

CONCLUSIONS: COMPILER CHANGES

We should begin by supporting HFP in FORTRAN only. _This is
the place where most trouble arises on conversions and
benchmarks. Per-program support in FORTRAN can be done without
HFP support in PL/I, although it may be somewhat awkward and
inefficient.

HFP support in PL/I is a
per-program scope. Any attempt to
until Version 3 PL/I.

significant job, even Tor
do this should be deferred

BASIC and APL support should be deferred until justified.

MULTICS TECHNICAL BULLETIN MTB-522 page 12

Runtime Changes

NEW DATA TYPE DESCRIPTOR

The correct way to manage the differences between HFP and BFP
is to assign a new data type code for argument descriptors which
will indicate which type of floating point number is being passed
as an argument, stored in a structure, and so forth, as we now do
for binary versus decimal and similar distinctions.

Assigning the Descriptor

Actually we need 4 descriptor types, for the following data
types:

o real floating binary short HFP
o real floating binary long HFP
o complex floating binary short HFP
o complex floating binary long HFP

paralleling the BFP values. This is a minor problem since we are
running out of descriptor type numbers: this situation will have
to be faced sooner or later anyway, and can be tackled by
assigning an escape value and using multi-word descriptors.

Changes to assign_

Once HFP data can be described in an argument list, the
system runtime routine assign can be called upon to convert
other values to and from HFP. The PL/I runtime program
any to any does most of the work for assign ; modifications to
this routine are extremely difficult. If PL7I programs are to
contain HFP constants, this work must be done.

Changes to ioa_

The widely-used system I/O routines ioa and formline must
have additional conversion code added to format HFP · data for
output. These routines will be directed by argument descriptors
in the calling sequence when formatting output.

CHANGES TO PROBE

To support HFP, probe needs to be able to compare, print,
and input HFP values. To know which values are HFP, probe must
be able to determine the flavor of a value from the symbol table.
This means that the symbol table utility stu must be able to
distinguish HFP from BFP. If per-program support is chosen, it

MULTICS TECHNICAL BULLETIN MTB-522 page 13

may also be desirable to be able to determine whether the
variables in a stack frame are HFP, perhaps from a stack frame

~lag. The best way to support these needs is to support HFP as a
set of data types in runtime routines like assign . The actual
changes to probe will be minor given this support. -

CHANGES TO DEBUG

The debug command is not as cleanly implemented as probe,
but the changes for HFP will not be major, given the stu support
described above.

CHANGES TO BUILTIN FUNCTIONS

The mathematical runtime library must be carefully checked
to ensure that accurate results are returned in HFP. Routines
such as arctangent have to be defined over an extended domain;
other routines must be checked for numerical stability under
wobbling precision. CP-6 rewrote their entire math runtime when
they instituted HFP; GCOS has recently modified theirs to work in
both modes. (Our current math runtime is old and is thought to
have less accuracy than the GCOS library.) If we are lucky, we
will be able to adopt some or all of the CP-6 or GCOS runtime
routines, but substantial work is still likely to be needed in

,_edapting and verifying these programs.

CHANGES TO PROCESS STATE MANAGEMENT

If the HFP flag is considered part of the process's state,
then specifications must be provided for when the flag is turned
on and off. These will probably involve many routines. Possible
changes to the entry operator have been mentioned above. We must
also check that the fault and interrupt handling path does not
unexpectedly kick a program into HFP: fim and ll must be
checked, as wel1 as signal and most of the ALM-coded system
runtime routines. If the linker is to check that an object
segment is compatible with the CPU type, then additional work
must be done to make this path efficient.

CHANGES TO PROCESSOR MANAGEMENT

The same state management specifications must be developed
for management of the processor state, so that the HFP flag is
not passed from one processor to another inadvertently.

The flag which tells whether HFP is allowed at a site must
be set correctly by system initialization. Hybrid systems using

,.a. CPL processor with a DPS8/70M processor cannot enable HFP,
· Jnless we want to invent some complicated software to set the

MULTICS TECHNICAL BULLETIN MTB-522 page 14

required CPU for processes using HFP; this would have some
performance impact.

CHANGES TO BINDER

The binder must be changed to generate correct object
segment flags telling whether the object segment contains HFP
code, based on the flags of the component object segments.

We may wish to change the binder to check for user errors.
It is not necessarily an error to have HFP and BFP programs in
the same bound segment, but the binder must be changed to warn
the user or to check argument match for all calls between
components. MTB-094 describes the parameter checking changes.

CONCLUSIONS: RUNTIME CHANGES

In order to preserve the consistency of the Multics
programming environment and to continue to provide the standard
services, quite a few changes are necessary. Even the bare
minimum is a lot of work; additional highly desirable improve
ments may be deferred or skipped because of the additonal
resources needed to implement them.

Application Programs

CHANGES TO MRDS

MRDS currently stores user data in several formats, and
accepts most data formats in argument lists. The second facility
comes naturally with assign conversion to HFP, but further
extension to MRDS might be -required to prevent underflow or
overflow when storing floating point numbers in ~the user's
database. Adding support to MRDS create mrds db to permit the
declaration of "complex float binary HFP" or similar values would
be a fair amount of work.

CHANGES TO GCOS SIMULATOR

Users may attempt to execute HFP programs within the GCOS
simulator. To support this, the simulator's state management
must be checked to ensure that the HFP flag got and kept the
desired value; additional checks are needed to detect the attempt
to run HFP on a non-HFP processor.

MULTICS TECHNICAL BULLETIN MTB-522 page 15

ARRAY PROCESSOR SUPPORT

"""' Plans are currently being made to provide array processor
support on Multics, interfacing with a special-purpose processor.
This device presumably accepts only BFP at present. Consultation
with the company that is providing the array processor is
necessary to discover:

o Whether the array procesor can accept HFP
o Whether it can accept mixed mode input
o How the desired mode is communicated
o How the Multics interface to the AP must change
o What features should be provided.

CHANGES TO USER APPLICATION SOFTWARE

There are three aspects to application software changes:
first, old software must continue to be usable; second, it may
wish to be able to work with new HFP programs; and third, it may
wish to use HFP to provide additional exponent range.

The first aspect is our job; but every applications
subsystem will probably have to be checked to make sure that we
have done our job correctly. The second aspect, checking for
continued correctness if run in HFP mode, is potentially extreme
ly difficult; it requires expert numerical analysts to insure

"""'~hat the application software doesn't start churning out garbage.
If a user recompiles his software in HFP mode and executes it,
the answers will in general be slightly different, due to the
loss of precision in the mantissa. In some cases, this loss of
precision may introduce numerical instability, so that the result
of the program becomes wildly wrong, or an algorithm fails to
converge. The third aspect may involve additional analysis and
rework of data formats and conversion packages. None of this
work can be done mechanically.

Honeywell software which is affected by HFP includes:

o Multics Graphics System

User software affected by HFP includes:

o Consistent System (MIT, AFDSC)
o IMSL (MIT, USGS)
o SPSS (USL, USGS)
o Harwell (MIT)
o Linpack (MIT)
o Conversion Packages (Marketing)
o CPS (USGS)
o SAS (USGS)
o STATPAC (USGS)
o MINITAB (USGS, Avon)

MULTICS TECHNICAL BULLETIN MTB-522

o CAM (USGS)
o GINO (Avon)
o ISIS (Avon)
o GLIM (Avon)

Developers
contacted
level.

and maintainers of each of these packages
to check their estimates for HFP support

CONCLUSIONS: APPLICATIONS

page 16

must be
for each

Conversion to HFP for current users will represent a
significant cost. We may therefore expect that some customers
will never convert, and that others will delay ·conversion for a
long time. If we expect continued growth of the Multics PARC,
then it is better to make HFP available soon, so that future
customers may avoid conversion.

