
.. ' 

MULTICS TECHNIC'AL BULLETIN MrB- 535 

To: Distribution 

From: c. D. Tavares 

Date: 09/0l/81 

Subject: Directions for Multics Graphics 

xn~roduction 

This Ml'B serves three purposes: 

i) To comp:i.re the Multics Graphics System (MGS) with other existing graphics 
systems; 

2) To document the rationales behind major design features of the tm which 
seem to be in conflict with aproaches taken by other systems,. where the 
rationales exist; and 

. 3) To identify a course of improvement to make the MGS more attractive to 
users and as much in line with current graphics technology as possible. 

I have attanpted to write this Ml1B in a format which will be understood 
by ·readers with little to no knCMledge of canputer graphics or the Multics 
Gra'Qhics System. I have done this not only to afford those readers with a 
free informal mini-course on canputer graphics, but because I hope as many 
Mu!ticians as possible will take the time to read and understand the MTS, 
in the· hope that many of them will make additional or better . suggestions on 
how to improve the product. 

Camnents may be sent via any of the follCMing methods: 

Multics mail: Tavares.Multics on System M (MIT only in a pinch) 

Continuum: 

PS mail: 

>udd>m>cdt>mtgs>Graphics (ngs) 

c. D. Tavares 
Honeywell (HED VA20-601) 
7900 Westpark Drive 
McLean, VA 22102 

Multics Project working doclnllentation. Not to be reproduced outside the 
Multics Pr; ject. Rights of distribution outside the Multics Project reserved 
to the author. 

- 1 -



overview 

The Multics Graphics System (more properly, Version II of the H;S) 
was designed and inplemented in 1973/1974. Since then, what MGS developnent 
and maintenance there has been has carefully stayed . within the original 
design concepts and framework set up in 1973, when we attenpted to design a 
system responsive to· the directions in which we thought the field of ccmputer 
graphics was heading. 

Needless to say, the field of canputer graphics baa undergone quite 
an evolution since that time. Still, by and large, the current KiS design· 
has served for the past seven years as a reasonable (and in sane areas,· 
still quite advanced) method of performing computer graphics. Now however, 
forces in both the technical arena and the marketplace make it necessacy 
for us to extend, expand, or redesign the r-r.;s to retain its canpetitiveness. 

Sane of the aforementioned forces are: 

• The rise of raster-scan graphics technology. In 1973, raster devices 
(displays which work on the same principle as television sets- moving 
the beam in a predefined pattem across the screen, turning the electron 
beam on and off as appropriate} were conside~ed toys- incapable of 
"serious" graphics. "Serious" graphics devices (like the Evans and Sutherland 
LDS-1) were calligraphic (stroke, vector) displays. Today, ra8ter devices 
(like the Ramtek, Chranatics, Sanders, and a host of "personal" canputers 
capable of various types of graphics) have cane into their own right. 
While they do not !f>Ssess the capabilities of calligraphic displays as 
far as detail goes they are significantly less expensive, and they 
possess sane capabilities that calligraphic displays do not- e.g., no 
noticeable flicker regardless of the number of lines displayed, and. the 
ability to provide colored areas as well as colored lines. 

• The proposed ANSI Graphics Standard. Released upon the world about two 
years ago, it takes a basically different view of graphics than the !GS · 
does. It does not have the capability for distributed intelligent graphics 
that the MGS has, and has no concept of structured graphics objects as 
"saveable" entities. It does, however, provide a mmlber of features 
that we do not, including sane that we cannot provide on a conceptually
(as opposed to practically-) equivalent basis under the current design 
of the K;S. 

. 
• The rise of DISSPLA as an industry-standard graphics application-level 

interface. DISSPLA, marketed by ISS(l) Inc., is a machine-indeperxlent, 
terminal-independent graphics system that provides caicanp-style lower-level 
interfaces and inpressive higher-level applications interfaces such as 
line, bar, and pie charts; contouring; cartography; text presentation 
(e.g., for slides, overheads) and related feablres. A separate package, 
TELir-A-GRAF, is a DISSPLA-oriented package similar to the z.x;s graphics.._editor. 

1 calligraphic displays usually start at about 1024x1024 addressible points;· 
most rasters, due to the TV technology involved, rarely exceed 512x480 

- 2 -



• The ubiquity of tecminal-independent graphics systems. Currently, a roster 
of tenninal-independent graphics systems would include the r«;S, the West 
Point GCS, DISSPLA, several ANSI implementations such as DIGRAF and TIGS, 
and foreign standards pranulgated by ANSI analogues, such as GINO-F in 
the UK. Although the MGS (along with Multics itself) was a pioneer in 
the field of terminal-independence, it is hardly any longer unique. As 
a matter of fact, with the exception of the MG.S (and· possibly TIGS), 
all packages in the above list are not only terminal-independent but 
machine-independent; written in a transportable language such as FORTRAN, 
with minor adaptations necessar:y to accamrodate it to the I/O systan of 
the· host. In such a marketplace, the host-dependent MGS must show clear 
advantages to a custaner if he is to choose it over one of these other 
packages- yet, it must at the same time be able to provide a · 1arge 
\degree of canpatibility with these other systems in case such is needed. 
This . canpa.tibility can range, for example, f ran the low end of being 
able to camrunicate with a device that inplanents the ANSI standard, to 
the high end of being able to offer similar sophisticated graphics 
applications. 

Basic Conceptual Disparities 

Despite all the other existing graphics packages on the market, the 
r-x.;s still has basic capabilities which are addressed by no other major 
graphics system. It also lacks (or provides conceptually-different forms 
of) capabilities eanm:>n to many other graphics systans. Primary examples of 
both are the ability to define structured graphic objects, the lack·· of a 
window/viewport orientation per se, and the ability to control 
highly~interactive, distributed graphics applications using intelligent 
terminals. 

STROC'lURED GRAPHIC OBJEcr'S 

Before t.lle Multics Graphics System, a· typical canmercial graphics systan 
usually consisted of a set of subroutines which drew pictures direcUy-
put the pen up or down, moved it to such-and-such a point, and so on. 
later, these were conceptualized into "shifts, vectors, and points", but the 
basic mode of operation was the same-- direct drawing of a picture. Whether 
the picture was drawn in real-time or the commands were put onto tape to be 
brought. to a plotter and drawn later is of little consequence- the fact 
is, once the picture was drawn, it was drawn. If it needed fixing, you had 
to edit, recompile, and rerun the program(s) that generated it; if. it needed 
saving, you had to freeze a copy of the program and all its subroutines. 
(I tend to refer to this as the "CalComp method", for historical reasons.) 

Under the Multics Graphics Systan, the user assanbles a graphic object, 
as opposed to assanbling a display or a picture. He invokes entr:ypoints to 
create primitive elements (such as lines, points, and text strings). He 
then assembles these elements in any way he chooses~ he can assemble than 
in any order, use any of the elements multiple times, or even not use one 
or more of the elements at all, as he chooses. The result is, for all 

- 3 -



practiCal. purposes, another nsingle" element, which can be used as a building 
block of larger structures, and so on. 

In addition to objects which can be drawn and seen {"graphic effectorsn), 
the user can also create other primitive objects which modify the appearance 
of graphic effectors: nmodal effectors", or "modesn, which control things 
like color, visibility, dottedness of lines, blink, etc.; and "mapping effectors•, 
or "mappings", which control things like orientation (rotation), size (scaling), 
and extents (clipping, masking). These can be applied to any object without 
modifying the object itself. For example, if the user has a solid object 
and wishes to create a dotted version of it, he creates a two-element 
list- the first elanent of which is a "dotted moden effector, and the 
second of which is a reference to the original object. The object itself 
i~ still solid- but the higher-level object represented by the new list is 
a dotted representation of the original object. The original object is not 
copied, but shared. 

Presumably, at sane point the user stops building his object and 
displays it. At this time, and at this time only, it is interpreted as a 
given, ordered sequence of items to be drawn; it is only then that the 
terminal is told what instantiations of what effectors fall under the influence 
of which modes and mappings: in fact, it is only then that we are allowed 
to know where any given effector falls on the screen, and then only for the 
duration of that single display operation. (A more thorough discussion of 
this topic occurs in the section entitled "Image Space and Object S};:ace".) · 

Later, the user may use the editing primitives to reach inside the 
object and change or replace pieces, perform restructuring, and so on, as a 
result of the visual feedback he gets fran the display operation ("does it 
look like what I wanted?"). He need not r~create the ncorrect" portions 
of his object. .And, if his terminal is sophisticated enough to have sane 
local ·processing power, the MGS assists it in keeping a local copy of the 
graphic object which can be edited .in place either locally or by the 
program running in Multics, with low data-transnission rEquiranents- a true 
"distributed graphics databasen. The user may also save objects in their 
structured form for later editing, redisplay, or use as canponents in 
still-higher-level objects. 

. The concept of structured graphic objects is central to the !GS, and 
several of our custaners have expressed the requirement that any future 
in'plementation of MGS retain this feature. 

THE ANSI CX>RE SYSTEM 

The proposed ANSI standard handles the structuring of graphic information 
in a manner which I personally consider to be the worst of both worlds. 
The user opens a graphic "segmentn, which is best described as a conceptual 
container. for a graphic object. The object is then created in strictly 
sequential form, similar to the Calcanp method. Fran time to time, the 
user might call subroutines that will set up {or change existing) modes and 
mappings, which are autanatically applied to subsequent graphic effectors 
created. Ultimately, the graphic segment is closed by the user, and displayed • 

. - 4 -



The graphic segment may not be displayed until it is closed. Once 
the graphic segment is closed, it may not be re-opened, meaning that the 
graphic object inside may not be edited. No facilities are provided for 
editing a graphic object in an open segment (the reasoning here probably 
being: why should your program want to edit an object it is in the process 
of constmcting when it could have just created it correctly to begin with?) 
The segments are not meant to be saved in files on the host system. All 
this might be forgiveable if graphic segments could be referenced by other 
graphic segments; alas, they cannot. Thus, the user of ANSI graphics has 
on his hands a canputerful of uneditable, unshareable graphics segments. 
Users wishing to do truly dynamic graphics have been forced, in sane cases, 
to create hundreds of segments containing one line each, link than together 
in various ways, and operate· on stmctures of these, making· these graphic 
segments more or less equivalent to our graphic atans, and their interconnections 
equivalent to our graphic lists. 

IMAGE SPACE AND OBJECT SPACE 

The basic difference between the MGS and other graphics systems lies 
in how it handles the dichotany between what is generally called "object 
space" and "image space". Image-space orientation implies that all graphics 
is conceptualized and designed with respect to how the image api:ears on the 
drawing surface. Philosophies like the "calcanp method" work entirely in 
image space- the user pays explicit attention to where, on the plotter 
page, every item appears that he is drawing. Conversely, object-space orientation 
implies that graphics is conceptualized and designed with respect to collections 
of "graphic objects". without regard to where they appear on the screen, if 
at all. We've already touched upon what this means in the r«;S. Sooner or 
later, of course, all graphics must be mapped into image space- but the 
longer one can stay in object space, the more general are the operations 
that can be performed. This is because there is a conceptual "binding" 
that occurs when a graphic object is finally set into image . space, along 
with the usual loss of information that accanpanies any binding. (The 
section below, entitled "Windows and Viewports", adds to the discussion of 
sane of these points.) The other side of the coin is that the amount of 
work the graphics system nust do to maintain this image-independence goes 
way up; mainly because it must track and transform all the extra infox:mation 
that is thrown away by systems which make the jump into image space earlier. 

This last point deserves explanation. Take the following example: 
since a graphic object can be displayed .either by itself, or shared by any 
ntunber of' higher-level graphic objects, or both at the same time, it is 
impossible to tell at creation or editing time where it will appear on the 
screen. In fact, if a higher-level structure contains the appropriate clippings, 
scalings, invisibility modes, or similar effectors, it is not even possible 
to tell .if it will ~ppear on the screen. Generally, the knowledge about 
position binding is reserved to the virtual terrnina). itself- meaning either 
the intelligent terminal or the Multics-resident graphic support procedure 
(G.SP) simulating it. Even after the object has been displayed, the 
terminal-independent portion of the graphics system is not allowed to assume 
anything about its position, since the graphic object can be edited in an 
arbitrary manner while inside the memory of an intelligent terminal. 

- 5 -



Other graphics systans deal with the problem in different ways. sane 
sinply fail to deal with it; sane restrict the operations their users can 
request; sane convert to image space quickly to lighten the load. None of 
them have to handle the problans of a hierarchical data structure in which 
transformations such as rotations, perspectives, clipping, hidden line 
el~tion, and so on, can be done at ~ level, in ~ order. 

This is not to say that Multics cannot take advantage of certain 
•image-space" tricks to boost its efficiency. Multics Graphics defines two 
list-structuring elements: lists and arrays. Both serve to collect and. · 
order other graphic elements "below" them, and can serve as elements themselves 
in other lists and arrays in a classic tree-structure. The difference 
between lists and arrays is that the graphics system is constrained to 
retain the structuring of lists even to as far out as the local menory of 
an in~elligent graphics terminal if required, in order to allow the real-time 
editing,· control, and animation of this structure; while it is free to 
reduce and optimize arrays in any way it pleases, since the user has pledged 
(by using arrays instead of lists) that he will never reference the subsidiacy 
elements as individual entities after the structure is canpiled by the 
graphic canpiler. In this fashion, the present graphic canpiler pre-digests 
all mappings, one mode (invisibility) , multiple consecutive shifts, etc. 
inside arrays, performing a job of canpaction and sinplification in a central 
location. Because the properties of the structured representation used by 
t«;S contribute an essential integrity to each unit/level of graphics structure 
(any object can be used as a primitive, and the integrity of the primitive 
cannot be affected by operations performed by other pieces of graphic structure 
that may reference it) these optimizations make use of this integrity: 
since the state of the object does not depend .on how it is referenced, the ~ 
graphic canpiler is free to set up a sort of "temporary image space• in 
which to make its optimizations. Al.so, raP's for non-intelligent devices 
can request that all lists be turned into arrays at run tine, saving themselves 
the trouble of having to handle canplex mapping operations. 

w:rNIXMS AND VIE.WPORl'S 

In "classical" (read, "Newmann and Sproull" or "ANSI") graphics systans, 
the user.has to work within two separate sets of coordinates. "World coordinates" 
are an arbitrary, non-dimensionalized set of values which the user defines 
to speak about the itens he is constructing. For example, a city transportation 
planner may want to draw street maps using vectors in units of miles; a 
machine-tool programmer may want to do his work in "mikes"; a circuit-board 
designer may want to work in millimeters. It frankly doesn't matter to the 
graphics system what unit the user thinks he is working in; the only thing 
that matters is that "2 gruzzles" is twice as big as "l gruzzle". '!he 
origin of world C:oordinates similarly do not matter- a insurance analyst 
working in "years" may . be drawing in the region of 1960 to 2020. '!be 
coordinates need not even be taken frClll the same danain- the analyst using 
his x axis to represent years well be using his y axis to represent deaths 
due to auto accidents. World coordinates are the coordinates of object space. 

"Screen coordinates", on the other hand, are inp:>rtant to define the 
size and extents of the graphic device being used. They are fixed for 

- 6 -



different devices and are in sane real-world unit such as inches, or sane 
hardware-defined unit such as "points". screen coordinates are the coordinates 
of image space. 

In these graphics 6fstems, the user constructs his display by first 
defining a window over his object space: "I'm interested in the years 
between 1960 and 2020, and the number of deaths between 0 and 10,000". 
Then he defines a viewport onto his screen: "I want to use the upper 
right-hand quarter of the screen" (e.g., fran (O,O), the center, to (512,512), 
using the ?£g convention). The display operation then maps (1960, 0-deaths) 
to (0,0) on the screen, and (2020, 10,00Q-deaths) to (512,512) on the screen. 
Choosing a different window or viewport will distort the picture differently 
(use of the word "distortion" presumes that the picture is one which can be 
tq~ght of as having sane "normal" scale in the first place, such as a face). 

One advantage of this representation is that the user can use all the 
absolute graphic effectors he chooses. (An absolute vector, for instance, 
is one which represents, "Start f ran here and draw a line .tQ the . point 
(10,56) "1 as opposed to a relative vector, which represents, "Start fran 
here and draw a line .Qf length 43 in the x direction and 20 in the y 
direction".) After all, due to the window/viewport mapping inherent in the 
display operation, anything "absolutely" positioned in the object sp:ice ends 
up being relative to the window and viewport anyway, and thus relative to 
the screen. 

But certain capabilities are lost in this design. Consider a user 
who is tasked with drawing a building whose facade contains 100 identical 
doors. (Obviously windows are indicated here, but so as not to confuse our 
terminology between glass windows and viewport/windows, let's call than doors.) 
He can go into •caicanp mode" and write a subroutine that creates all 100 
doors (possibly at various rotations-- the facade isn't necessarily flat) at 
all the. appropriate locations in the object si;ace- inelegant, hard-coded, 
and brute-force1 besides the fact that doing things like rotations is a job 
for a graphics system, not a graphics user. On the other· hand, the user 
could create the door once, choose an appropriate window around ·it, and 
then display it 100 times through 100 cleverly-chosen viewports- elegant, 
and canpletely non-reproduceable the next day, because the window/viewport · 
chosen is a parameter of the display operation, not of the object being 
displayed. As a result, the user has nothing he can save which represents 
"the building". Of course, the program itself could .be saved, in which 
case we're back in hard-coded "calcanp mode". Or, the window/viewport selection 
could be made pa.rt of the fop-level of the graphic object1 but this object 
coµld never be used as a pa.rt of a higher-level object because its position 
on the screen is determined forever (i.e., the jump to image space has 
already been made) • 

Instead of postulating multiple projections from a object space to a 
screen systan, the current ~ takes the tack that the object si;ace and 
inage space are fixed with respect to one another; the screen acting as a 
window on sane small central portion of a much-larger object Sface. It is 
then the job of the user to move any objects he may create into the range 
of this window by inserting the proper positioning effector (e.g., a set.position 
or a shift) at the beginning of the object- sanething that can be done at 

- 7 -



object.creation time or at any time aftetward. He can control its distortion 
and orientation by inserting scaling and rotation effectors at the beginning . ..-.. 
as well. · ·· ~ 

Thus the current user of MGS has about the same practical Capabilities 
as the user of a window/viewport system, with certain tradeoffs. First, · 
his use· of absolute effectors is severely curtailed: it is difficult to 
npull" a graphic iten into view of the screen by inserting shifts at its 
start, when one or more of its canponents is securely anchored sanewhere 
out in the object si;ace' s left field; or to display a building containing 
100 doors when. the door insists on appearing only at one place on the 
screen. The logical result of this philosophy is that the ideal 
perfectly-manipulable graphic iten is made up completely of relative effectors, 
and. in fact hil no "bane position" in the object si;ace; instead, it floats 
with respect to an origin which is to be set later {or, if it is not set 
before the iten is displayed, is by convention (O,O), the center of the 
screen) • {The astute reader will have already deduced that the virtual 
size of the object si;ace has just been made completely 1000t, aside fran its 
utility in "holding" ·pieces of large· objects which have been clipped off 
the screen.) 

Because of this limitation (and because of symnetcy considerations 
with respect to the capabilities of graphic hardware circa 1973) only two 
absolute effectors were defined: setposition and setpoint. No absolute 
vector currently exists, because we have no "magic translation function" to 
move its endpoints with respect to the screen, as windows and viewports do. 

Extensions Necessary ,tQ ~ .MGS, 

Conceptual differences aside, these other graphics systems provide features 
and capabilities that the MGS does not: hidden lin~s, colored areas, perspective, 
clipping, and text handling. Sane of these capabilities are {theoretically) 
simple to i111?lenent in the MGS; we sill'Ply have never gotten around to it. 
Others are difficult because our unique framework of structured graphic 
objects makes it necessacy for us to devise methods for their application 
that are much more general in scope than the algorithms that exist in other 
graphics systems. sane reviewers have gone so far as to suggest that sane 
of the new capabilities (e.g., perspective) will be ill'Possible to handle in 
a structured manner. I believe this not to be the case. . If the new 
capabilities are designed in a correct and general way, we should have no 
problem fitting them into a standard, structured envirorrnent. 

WINDCliS AND VIE.WJ?ORl'S, M.;S-STYLE 

One :fa.rticularly elegant solution to the problem of allowing multiple, 
stacked windows and viewports without ever leaving object si;ace is to define 
a new mapping effector to go with scaling and rotation. This new "reference 
point" effector will establish the current graphic position (or sane point 
relative to the current graphic position, or sane absolute position) as a 
new "relative origin" until reverted· or superseded. When no "refpoint" is 
active, the default is the actual screen origin. Since refpoint is a mapping 

-8-



,.. effector, refpoints on different levels will interact benignly with each 
other- e.g., a refpoint setting the the relative origin to a certain absolute 
position may actually be choosing what it thinks is an "absolute position" 
relative to sane superior refpoint effector ·previouSly encountered in its 
parent level. Best of all, it frees the programmer to use any and all of 
the graphic primitives available (including, since we have just made it 
meaningful, a new absolute vector element) , secure in the knowledge that 
his object is still easily relocatable .in object space. · 

The benefit ranains that the cpnfiguration of the picture on the 
display screen is always expressed by the configuration of the graphic 
object being displayed- that is, that the user has a graphic object which 
carries its own positioning, distortion, orientation, perspective, and so on 
p.long xi.th itself. Thus, each picture a user creates is also an object, 
which· can then be used as a canponent of a larger object, ad infinitum, 
without having to recanpute or alter its "display parameters" •1 Furthermore, 
the user, by the simple transmission of this object to a satellite intelligent 
graphics temd.nal, has told the temd.nal everything it needs to know about· 
these attributes of the object to enable the terminal to display the object 
exactly as the user wishes it displayed- a principal requiranent: of our 
distributed graphics database. 

HIDDEN-LINE ELIMINATION AND SURFACES 

r The current MGS does not perform hidden-line elimination because there 

.,.. 

is no basis for it. In geanetric fact, lines cannot be hidden by other 
linesi and lines are all the current MGS kn0t1s how to express. It is 
clear, however, that users want to speak about surfaces, and have than hide 
other objects. Aside fran hiding properties, surfaces are also necessai:y to 
express such concepts as colored areas on the screen. 

To allow this, a new surface effector. will be implanented. Two choices 
of primitive are possible: planar surfaces with three points (triangles) or 
convex planar surfaces with N points (irregular convex polygons). Each has 
its advantages. Triangles' vertices are always coplanar and convex by definition, 
and certain hidden-line routines work best when their object sp:ice is restricted 
to triangles. On the other hand, implementing coloring or "patterning" in 
device drivers is needlessly canplex when the input primitives do not cannunicate 
cases in which many primitive triangular surfaces are really all part of 
the same overall surface. Most terminals that can color areas already know 
how to do alloost all of such cases in their hardware. Plotters that would 
have to cross-hatch areas to express a similar effect would go crazy •. If 
the input primitives do carmunicate this linkage, then they are sinply 
taking the long way around actually describing the original irregular convex 
polygon after all. If they don't, some sort of postprocessor is requ~red 

1 Those familiar with the proposed ANSI core may note the kludges which had 
to be introduced into their single-level objects to implement two- and 
three-point perspective; a conceptually-sinple prospect in a system like 
the r«;S which permits layered graphical entities, each layer sirrply applying 
another perspective point to its subsidiary objects. 

- 9 -



to "re-derive" the lost connections. In point of fact, this has been the 
subject of nuch discussion, and the jury is still out on it. 

The surface primitive will have no "outline". Its major visible effect 
will be to hold color and/or to hide other things. If an outline is 
desired, one may be supplied by surrounding the surface with the appropriate 
vectors. 

Due to the expense of hidden-line elimination, the "opacity" of a 
surface will be eontrolled by a mode, whose default will be "transi;arent" 
for efficiency. This mode has a non-obvious ef feet on non-surface objects 
as well. When this mode is in the op.:ique state, not only does this enable 
surfaces to hide things, but it causes other effectors .t.Q allow themselves 
.tQ ,_.122 hipden. When it is in the transi;arent state, not only do surfaces 
no longer hide things, but other effectors will al.ways appear "right through" 
to the screen surface- even through a later (or earlier) surface that may 
have been specified as "opaque". In other words, hidden-line processing 
must be turned on for an entire object before any of the elements of that 
object can either hi.de or 122 hidden. 

This is not an unreasonable restriction, since hidden line processing 
is typically desired at the level of "scenes" (canplete displays), and 
turned on or off on that basis. Although there are certain ca8es where 
this feablre may be misused to produce an unreasonable display, such uses 
are practically equivalent to drawing an arbitrary scene on the display 
before (or after) sane other. scene which is processed for hidden lines, 
without an intervening screen erase. In such a case, it is obvious why old 
(or new) lines have broken through otherwise "hidden" areas. 

TEXT PRESENTATION 

The days when graphics systems can decline to provide text support 
are over. Text is an important part of any presentation-quality graphics, 
and market pressures al.one dictate that a graphics system give its users 
fine control over high-quality text capabilities. 

The present ~ al.lows a user to choose between two treatments of 
character strings: "text" and "varying text". A text element is a character 
string that is presented in the tecninal. 's native character set. If the 
terminal has more than one native character set, one is chosen in a non-negotiable 
fashion by the GSP. Text appears, like any other printed text, in a horizontal 
line fran left to right, at the current graphic position. It is not affected 
by mappings- text cannot be rotated, scaled, or what have you. A modicum 
of control is given the user to specify which corner or edge of the string 
is aligned with the current graphic position. 

Varying 'text is not a primitive element. The user supplies a string 
and several additional arguments to an entrypoint of graphicJ[Bcro~, which 
assembles a large collection of vectors and shifts to "draw" the desired 
string. The user can specify the height and (average) width of the characters, 
the name of a font (a graphic character table) which describes the drawn 
representation of the individual letters, and which comer or edge of the 

- 10 -



string is aligned with the current graphic position. Since the resulting 
element is a large collection of vectors and shifts, vacying text can be 
rotated, scaled, mapped, and so on. 

The limitations of the text element are obvious. The limitation of 
varying text is that its identity as text is totally lost within graphic_JllacroEl_. 
This has several disadvantages, nost of them connected with GSP's. For 
example, a GSP for a Diablo-type temdnal might want to know that a user is 
requesting "the string 'Nottingham' in English Gothic type measuring 6 points 
by 12 points" so that it can use its discretion to punt the entire request 
and replace it with a typed version of the string rather than plotting ten 
small, black clouds. Altematively, a GSP for a plotter that has the capability 
to scale and rotate its own intemal character set (this is a camoon capability) 
cannot use this speedy feature- plain text elements are not allowed to 
rotate or scale, and vacying text elements are not identifiable as text. 
Finally, · there are several attributes of textual presentation that neither 
of the existing forms of text address: inter-character spacing, text plane 
(the direction of the baseline and plane face on which the text is drawn 
before it is rotated) , and text direction (possibilities that cannot be 
handled by text plane are right-to-left lettering without reflection, and 

.up-to-down lettering where the letters ranain right-side up). 

The ANSI Core design of text provides most of the definition necessacy, 
and it will be used as a basis for new text capabilities in the MGS. Three 
unresolved points ranain. First, we will need to redefine sane of the ANSI 
constructs to handle fonts with variable-width characters. For example, the 
ANSI definition of character size and spacing makes the basic assumption 
that all characters are the same width to start with- yet we need to 
retain our support of our variable-width, graphic-art-quality fonts that we 
currently provide under the vacying text capability. Second, we need to 
define the appropriate interactions between textual mappings (plane, direction, 
size, spacing) and graphic mappings (rotation, scaling). Finally, we need 
to specify how fonts are identified as part of a graphic structure and how 
this specification is transnitted to and used by a GSP. 

FASlm IMPLEMENTATION RFSl'RICl'IONS 

There are three inplementation restrictions in the current MGS that 
users seem to run into more than others: size of the WGS, precision of 
Multics standard graphics code (MSGC) , and size of graphic buffers. Incanpatible 
changes will be necessacy to ease these r.estrictions. 

currently, the working graphics segment (l'K25), the buffer in the process 
directocy in which graphic objects are assembled and edited, is limited to 
one segment. A !.~ft structure manipulator package especially designed for 
the graphics syst perfoimS storage allocation, item threading, and garbage 
collection on this single segment workspace. This limitation extends to 

r 1 lSllL.r based upon a 1969 design by Meyer and Skinner and heavily IOOdified 
since. 

- 11 -



pei:manent graphics segments (FGS's) as well, since they are just lsrtL segments 
kept in pemianent filespace. 

A new version of lsrtL that handles multi-segment WGS's and ~·s bas 
already been coded and debugged. It runs sane 15% slower than the old 
version in worst cases, due to the double indirections and the extra cleverness 
and care necessar;y to reclaim all possible available free space- a consideration 
that was lUl~rtant when graphics structures were smaller. 

It inplements a (technically) incanpatible change: the "node values• 
returned by lsrtL (via the graphics systen) as object identifiers were actually 
18-bit offsets into the graphics segment. Thus, the calling sequences of 
most entries in the graphics systen deal with a good many "fixed bin (18) n 
parameters. With the new multi-segment WGS, node values are now constructed 
in a ·fcu;;hion similar to vfilEL descriptors, and· thus are fixed bin (35). 
This results in a change to many include files and most of the graphics 
manual, but since fixed bin (18) is done using full-word instructions, existing 
graphics programs should not break. (When they are recanpiled, of course, 
the canpiler will issue warnings triggered by the new declarations in the 
include files.) The only programs that would be broken by this incanpatibie 
change are those which store node values in unaligned variables. I don't 
know of any, nor do I think. it likely there are any, since the current 
calling sequences won't accept unaligned variables by reference anyway. No 
one currently stores unaligne(l node values in a permanent file, because 
node values are not conserved across processes. 

Multics standard graphics code (MSGC) is a representation of graphic 
structures designed to be transmitted over cannunication lines to a tenninal.. 
The graphic canpiler walks a specified graphic tree structure in the WGS, 
converts it into MSGC, and uses the I/O system to ship it out to the 
terminal. In the event that MSGC is not directly digestible to the terminal 
(which is usually the case) , it is intercepted by the graphics sUR?Ort 
procedure (~) and translated into sanething equivalent but more palatable. 

currently, MSGC possesses a well-defined but rather intractable set of 
formats. Various graphic effectors are coded in various formats, largely by 
executive fiat, for reasons rooted in oral histor;y. The extensibility of 
MSGC is next to nil. Users have canplained that they need to exceed the 
allowable extents of object space- -4096 to 4095 in increments of l/64- a 
restriction ~sed solely by MSGC format limitations. Also, the precision 
of the current node fomat is insufficient to hold the node values fran a · 
new nulti-segment ~ already re:iuiring an incanpatible change. Finally, 
the remaining available character codes under the current assignment strategy 
are too few to accamroda.te the new primitive effectors we need to add to 
the graphics system. For all these reasons, MSGC must be changed. 

No matter how MSGC is changed, a flag day will result for all sites 
with bane-grown GSP' s. Philosophically speaking, MSGC is the "native language• 
of the Multics virtual graphics terminal (vm')- and therefore, of anything · 
that needs to sinulate it, which includes the entire class of GSP' s and 
intelligent progranunable graphics devices. (It in fact is fortunate that no 
one uses any of the latter with the ?GS, or the incaapatibility would be 
even more serious.) 

-12 -



.. 

,. 
A new Mfa! has been devised, inplemented, and debugged that addresses 

the pre>blems of extensibility and limits on object space. Measurements on 
the present prototype show that it averages 12% Jn.Q.C.C canpact than the old 
format, even though its range and precision are many orders of magnitude 
greater. It will have to be changed to address the character code reassignment 
problem. Its format and the new proposed interface to GSP's is the subject 
of an M1'B to be distributed in the near future. 

Finally, the size of graphic buffers has been identified by custaners 
as a limitation. In the operation of the MGS previous to MR9, the graphic 
canpiler assembled an entire structure description into MSGC in a single-segment 
buffer and passed it to the graphic_c:linL in a single write call. The 
9~ic_dinL parcelled it off, effector by effector, to the GSP for translation, 
then assembled the output (native device code) into another single-segment 
buffer. · This was done so that the entire graphic object could be validated 
before sending any of it on to the device. If the graphi~dinL. found any 
error in the graphic code or received any error indication fran a GSP, the 
ouffer would not be sent. Additionally, it needed to delay· sending any 
output to the device on the chance that it would encounter a directive in 
the GOT ordering it to tum a list into an array. This directive would 
cause "backtrackingn and the resultant discarding of a portion of the device 
output buffer. 

In MR9, inEUt graphic code is checked for backtracking contexts before 
,,-. any part of it is offered to the GSP. output fran the GSP is then collected 

in a buffer whose size is determined by the GOT, and sent to the graphic 
device as the buffer fills. This not only removed one of the segment 
limltations, but resulted in an inprovement with respect to the elapsed 
real-time in graphics display operations. 

· The other segment limitation is not as easy to resolve. The graphic_dinL 
requires each graphic write call to consist of a complete graphic structure. 
This was done not only so the graphic_dinL. could double-check the correctness 
of ._.he data in each write call, but because intractable asynchronous output 
problems cause enough trouble in the graphics system without our providing 

·further encouragement and larger windows. The only apparent solution is to 
bite the bullet on the asynchronous output problem, and to invent a new 
·"continuation effectorn in MSGC which would be placed at the em of incanplete 
transmissions of MSGC to indicate that more was on the way. We may be able 
to put this in'provement off a bit, due to the increased density of the new 
MSGC. 

Conclusion 

Tl is Ml'B has attempted to contrast the design of the ~ with those 
of other contemporary systems; to explain the reason the current design 
decisions were made; to describe the current limitations of the MGS in 
terms of desirable features; and to propose mechanisms for inplanenting 
these featllres in a manner canpatible with the current operating philoso:Etiies 
of the K;S. I welcome and solicit input on any of the topics or proposals 
discussed, as well as any the reader feels have been ignored. 

- 13 -


