
Multics Technical Bulletin MTB - 575 

To: Distribution 

From: James A. Bush 

Date: March 17, 1982 

Subject: The Multics Tape Problem 

INTRODUCTION AND PURPOSE 

Anyone who has ever processed a tape on Multics knows that 
our tape software is not exactly "Multicious" in nature. There 
have been several attempts in the past to rectify this situation, 
by designing improvements to the tape software, mostly in the 
area of replacing the common tape module, tdcm_. The most 
notable of these designs was tape ioi (documented in MTB 301, 
published in 1976 and updated in -MTB-383, published in 1978). 
Due to manpower and budgetary constraints, these improvements 
have never been implemented. Even if an implementation had been 
completed for tape ioi , only one of the generic problems with 
our tape software is addressed by its current design. 

There are at least two generic problems with our tape 
software. They are performance, which was addressed by 
tape ioi , and the user interface. This past year, a tape 
continuum meeting was set up with the express purpose of 
discussing various aspects of the Multics tape problem. A brain 
storming session was held on December 10, 1981 to discuss the 
various problems brought up in the tape continuum meeting and add 
any others that seemed pertinent. The purpose of this MTB then 
is to detail the problems brought up in the tape continuum 
meeting and brain storming session and offer a planned solution 
for improvement of our tape software. 

THE PROBLEMS 

Below are the problems brought up at the brain storming 
sessions (plus some others I have thought of since): 

o Multics tape processing speed is to slow 

On a recent benchmark (which we lost by the way), the 
effective rate of a 200 IPS MTU610 tape drive was measured to 
be 38 IPS when writing data at a density of 6250 BPI. The 
reasons for this speed discrepancy are many, but it is mostly 
due to the large amounts of overhead incurred in a users 

Multics Project Internal working Documentation. Not to be 
reproduced or distributed outside of the Multics Project. 

Page 1 



MTB - 575 Multics Technical Bulletin 

process when writing or reading data to or from tapes. In 
order to write the contents of a paged segment onto tape, a 
users process must: 

Reference the desired segment, which if not already known 
to the process will cause a segment fault to occur. 

If any compaction or formatting of the data is to be done, 
parts of the segment must be copied into a buffer segment 
which would cause a page fault to occur on the desired 
segment and possibly the buffer segment as well. 

Call the appropriate tape module and the tape module copies 
the data into one of the available buffers in the "tseg" (a 
buffer segment shared by all tape modules and lower level 
tape interface module, tdcm ), after adding any formatting 
or control information to the data. This could also cause 
a page fault, since the tseg is paged. 

When enough data is accumulated in a tseg buffer to satisfy 
the desired physical record size, or when several of the 
tseg buffers are filled, if the tape module is writing more 
than one physical record per I/O, the tape module must call 
tdcm to initiate a write to empty the filled buffer(s). 

The tdcm module will now copy (again) the buffer(s) from 
the tseg into the ioi workspace which is paged and 
potentially unwired (a feature of the io buffer manager, 
iobm, keeps the workspace wired for some period of time 
after an I/0 has completed), which could cause a page fault 
to occur on the ioi_workspace. 

The tdcm module now calls ioi to issue the physical write 
request. (This will wire -the workspace if it was 
previously unwired.) 

ioi sets up the appropriate tape channel mailboxes and 
calls the io manager which finally issues the I/O channel 
program which- will terminate and stop the tape after the 
I/O is complete. 

After the I/O is initiated, control is returned to tdcm 
which will either (1) go blocked if in sync mode. or (2) 
return to his caller if in async mode, allowing the caller 
to fill another buffer or set of buffers. 

Assuming async mode, when the next set of buffers is 
filled, the tape module calls tdcm again which must now go 
blocked and await the completion oT the previous I/O. 

When ioi interrupt gets the terminate interrupt from the 
previous I/O, an ips_ wakeup signal is generated, which is 

Page 2 



Multics Technical Bulletin MTB - 575 

caught by tdcm (if the users process is still eligible) 
because he is sitting blocked waiting for it. 

The tdcm module now makes a cursory check of the terminate 
status and if it is judged to be.ok, calls ioi to issue 
the write for the next set of buffers. 

Since the tape motion had stopped with the last terminate, 
several milli-seconds must now be expended by the tape 
drive to get up to speed before any data is actually 
written on the tape. 

This process continues in more or less the same fashion 
until the desired data is written on the tape. 

One can see from this scenario that there are really two 
problems which effect tape performance: 
(1). Data is copied too many times, not only incurring the 

overhead of the actual data copy, but potentially causing 
page faults and the associated overhead in processing 
them. 

(2). Tape motion stops when each I/0 is complete, which not 
only incurrs some finite amount of overhead by the tape 
drive to come up to speed when another I/O is issued, but 
if the users process had become non-eligible due to going 
blocked and waiting for the tape I/O to complete, tape 
motion will not be initiated again until the users 
process is put back into execution by the traffic 
controller. 

The performance problems associated with reading data from a 
tape into a segment are pretty much the same as that for a 
write, but in the reverse direction. Therefore I will not 
detail the read segment scenario. 

o The tape I/O modules are basically unmaintainable 

0 

The iox compatible io modules, tape ansi , tape ib~ , 
tape mult , ntape , and tape nstd were written-by Multicians 
that-have- long sTnce departed the Multics development group, 
and were written in less than a structured format. This makes 
them difficult for a new person to understand and next to 
impossible to correct the many bugs that exist within the~. 
This is also true of the ios compatible module, nstd (still 
used by the GCOS simulator- and tape nstd ), and the tape 
device control module, tdcm_. - -

Some tape modules are missing 

There are currently no tape modules that support some of the 
common tape formats such as GCOS standard, GCOS UFAS, CP5/6, 
and GCOS 64. Although some of these are similar to ANSI 

Page 3 



MTB - 575 Multics Technical Bulletin 

standard, there are enough differences so that tape_ansi will 
not process them adequately. 

o Little support for stranger tapes 

Currently, the only stranger tape processing capability we 
have, is the interactive command, read_tape_and_query (other 
than individuals private tools). The read tape and query 
command does a fairly good job of allowing a stranger tape to 
be inspected by reading records and dumping their contents, 
and has a limited repertoire of canned tape formats whiah it 
can process, once the format is determined. But in many cases 
this is not enough. Many times, a stranger tape will be 
encoded in some non-standard format, (e.g. character data 
encoded in an "extended" BCD or ASCII character set, some of 
the characters of which have no equivalent in the Multics 
Ascii character set), or character and binary or hexadecimal 
data concatenated in the same record. 

o Tape error recovery is inadequate 

·111 of the current tape modules do their own error recovery, 
instead of having consistent error recovery procedures 
centralized in one place which would logically be tdcm in 
todays tape software. The tape mult module even implements ~ 
its own unique (in the industry) write error recovery by 
simply re-writing the record in error without backspacing and 
erasing over the bad spot on the tape. With todays high 
density data encoding techniques used on our tape subsystems, 
this type of error recovery is ill advised at best. 

Our current tape subsystems have many hardware features to aid 
in the essential task of error recovery. The tape modules 
currently have no interface to use these features and 
therefore must rely on the traditional backspace/retry type of 
error recovery, which is not always adequate to recover 
marginal data written at high densities~ 

o Large number of outstanding trouble reports on the tape 
software 

There are approximately 100 open TRs that currently have no 
resolution. The reason for this (be~ides the obvious, buggy 
software), is that no one has been assigned to maintain the 
tape software for sometime. Bugs have only been fixed 
recently, because some individual developer became interested 
in a particular bug and took it upon him/herself to fix it. 

o Most tape modules exhibit a poor user interface 

The user interface to most of the tape modules is in general 
inconsistent and restrictive. Some tape modules use a "-ring" 

Page 4 



Multics Technical Bulletin MTB - 575 

attach description argument to specify that the tape is to be 
mounted with a write ring, while others use "-write" for the 
same purpose. The tape ansi and tape ibm modules in 
particular are to restrictive-in their en?orcement of their 
respective standards. The ANSI tape standard specifies that 
the maximum block size supported is 8192 bytes. The 
tape ansi module supports this rigidly, even when a user has 
a tape that otherwise meets ANSI standards, but has a block 
size that is greater than 8192 bytes. 

There is also no concept implemented which allows default 
values to be inserted for attach description arguments that 
are omitted. This is particularly true of the tape ansi and 
tape ibm I/O modules, making their use fairly frustrating 
when- little is known about the format of a particular tape 
volume. This is especially true when a person is not that 
familiar with what exactly has to be specified in a tape ansi 
or tape ibm attach description (after a user once reads the 
volum~nous -writeups on these modules, he/she is usually 
confused as· to what exactly is required), since the error 
diagnostics from these modules leaves much to be desired. 

o RCP does not pass on tape drive and volume info 

In the course of tape volume authentication, RCP learns many 
things about a particular tape volume such as: tape volume 
recording density and format type (i.e. IBM, ANSI, GCOS, 
Multics standard, or Unlabeled). RCP also has speed and 
density capability information available on the selected tape 
drive. Unfortunately, there is currently no way for RCP to 
pass this valuable information on to the IO module that has 
requested the tape attachment. This forces each tape module 
to repeat the procedure of validating the label to see if the 
requested tape volume is correct as far as format type and 
tape reel number. 

o General lack of tape utilities 

There are. very few tape utilities available on MulticB. There 
are tape utilities meant for specific tasks, such as copy mst 
a.nd copy dump tape, which are used to copy Multics system - and 

.release -tapes for shipment to the field, but there are no 
general logical or physical tape copy routines available. 
There are also some utilities for reading data from a tape 
into the Multics file system, and writing data from the 
Multics file system to a tape (e.g. tape in/tape out, 
copy file, and tape archive). But there is no simple command 
which will write or read a tape, dumping information to or 
reading information from a tape, in ANSI standard tape 
interchange format. 

o The iox IO system is not particularly suited for tape IO 

Page 5 



MTB - 575 Multics Technical Bulletin 

The current Multics IO system, iox is byte oriented and works 
with a file as a single entity. Data on a tape on the other 
hand, may be nine bit byte, eight bit byte, six bit character 
or 36 bit word oriented and may be contained on several 
different tape files, each of which may have its own unique 
format. In iox terminology, a file is "attached to an IO 
module" and the~ "opened" for reading or writing in one of 
several different modes. When doing tape IO, this involves 
not only attaching an IO module, but also the physical 
mounting and positioning of the tape volume on an assigned 
tape drive (this assignment is implicit by default), with the 
desired tape file name or number being specified in the 
"attach description". The tap~ is then "opened" for reading 
or writing and IO operations are begun on the desired tape 
file. IO continues until an "End of File" condition is 
reached, at which time a user would "close" the file. If the 
user wanted to process the next sequential tape file, one 
might logically think the only thing that would be required 
would be to "open" the next file, but due to the fact that the 
file name/number is part of the "attach description", the user 
must first "detach" the IO module and re-attach the same IO 
module to process the next file. Fortunately, all tape IO 
modules that support multiple file formats, also support an 
attach description argument known as "-retain". The -retain 
argument allows the user to detach an IO switch and reattach ~ 
the same IO switch, without requiring that the tape volume be 
demounted and remounted and repositioned to the next 
sequential file. However, I maintain that the "-retain" 
attach description argument is only a "kludge" to get aroun~ 
this weakness in the iox IO system. 

Because of the reasons mentioned above, iox does not support 
physical file (and physical record within a file) positioning. 
It would be much more convenient and less costly if, after 
determining that the current file was not what the user 
wanted, he could cause a forward space file command to be 
executed by.the tape software and read from the next file. 
Currently the only kind of positioning that is supported is 
"type 3" or relative character positioning. And this is 
implemented by simply reading data forward until the desired 
position is reached. This particular function is one of the 
biggest performance problems with the volume retriever today. 

o Tape labels do not meet FIPS standard 

Tape labels generated by tape ansi are not in compliance with 
latest FIPS/ANSI specification. -

o New software subsystems will put new requirements on the tape 
software """ 

Page 6 



Multics Technical Bulletin MTB - 575 

The New Data Manager (NDM), currently being designed by MSD, 
and the "CRAY Connection" subsystem, being designed by HISUK, 
both have unique tape processing requirements. The NDM will 
use tape output for "after image" database journalization, 
which will require almost real time tape response and may 
require multi-process access to the journal tape for 
Transaction Processing applications. The Cray attached array 
processing subsystem, will require lower ring tape attachment 
for doing "backup" dumping of the Cray operating system, 
through a high speed data link, which may require almost real 
time tape processing speeds. 

THE SOLUTIONS 

I believe the ultimate solution to the tape problems stated 
above, is a complete overhaul of the tape software. Most of the 
performance problems could be taken care of by finally 
implementing most of tape ioi as it is currently documented in 
MTB 383. As far as solving the problems associated with the user 
interface, I feel a completely new approach should be undertaken. 

This new approach will be the design and implementation of a 
new ta~e module that I have named "mtape "· Although the 
technical details of the design of mtape have iiot been completed 
and will be the subject of a future MTB, a thumbnail sketch of 
mtape_ might be helpful to the reader at this time. 

The basic idea behind the design of mtape is th~ premise 
that only one tape module is required to meet the needs of all 
Multics tape processing, if that tape module is designed with 
flexibility and extensibility in mind. When a tape volume is 
opened for reading, mtape will obtain information as to its 
format type from RCP (i.e.- ANSI, IBM, GCOS, Multics standard, 
UNLABELED, etc.). This information will be used as a key to call 
the appropriate tape label processing routine. A def~ult 
mechanism will assign reasonable default values for any 
information that could not be obtained from the label record or 
explicitly from the users invocation of mtape (e.g. if RCP 
indicated a GCOS tape, the default values would be: Format = VB, 
Block= 1284 bytes, reading mode= binary). 

Using mtape for tape output, the user may specify as much 
or as little as he wishes, pertaining to the output tape format. 
Again the default mechanism will fill in the blanks. If the user 
specified nothing at all about the output tape format, the 
default mechanism would set up the format as an ANSI standard 
interchange tape (i.e. Format = DB, Density = 800 BPI, Track = 
9, Block= 2048 bytes, recording mode= nine). 

SHORT TERM SOLUTIONS 

Page 7 



MTB - 575 Multics Technical Bulletin 

Since tape ioi and mtape_ have not yet been implemented and 
by current estimates will take 24 man months to complete, what, 
if anything, can be done in the interim to improve tape 
performance and the user interface? Several inexpensive short 
term "fixes" present themselves, for implementation within the 
MR10.0 time frame: 

o Perform metering on the tape software 

By using the metering tools available on Multics, such as 
trace, profile and cumulative page trace, we can find out 
where the performance bottlenecks -are. If some of these 
bottlenecks turn out to be inefficient coding techniques, the. 
code can be tightened up in these areas. 

o Quick fixes to the traffic controller 

A process using tapes could be given retained eligibility 
after that process goes blocked and a short, high priority 
time slice upon receipt of a tape interrupt. 

o Pick up support for tape_gcos_ 

The Air Force Data Service Center (AFDSC) has written an iox 
compatible GCOS tape module which they have offered to HIS in 
return for continued support and bug fixes for this module. 
We could install this module for use by other Multics. 
customers such as Ford and Bell Canada, who have heavy GCOS to 
Multics (and visa-versa) program transport requirements. 

o Relax tape_ansi_ standards for reading 

We should remove the 8192 byte block 
tape ansi . Several sites have already 
mbdi?ications to tape ansi . If MSD 
tape ansi ' it would relieve sites from 
new releases are sent out. 

o Re-write tape_mult_ error recovery. 

size limit within 
done this in local 
made this mod to 

making this mod when 

We should re-write tape mult write error recovery to perform 
error recovery by -backspace/erase/re-write instead. of 
re-writing the error record as is done today. This would 
greatly improve reliability of system tape applications, such 
as the volume dumper and the hierarchical dumper systems. 
Note that tape-rnult read error recovery was re-written for 
MR9.1 to do backspace/re-read error recovery. 

o Install new version of tape_in/tape_out 

We should complete 
tape_in/tape_out that 

and install a new ~ersion of 
was left about 90% complete by a 

Page 8 



- ~ -:,. 

Multics Technical Bulletin MTB - 575 

recently departed member of the Multics development staff. 
This would fix the many outstanding bugs and user complaints 
of this tape processing utility. 

Page 9 


