
,... MULTICS TECHNICAL BULLETIN MTB-584 

To: MTB Distribution 

From: Gary C. Dixon 

Date: April 23, 1982 

Subject: Multics C&F Maintenance Study 

INTRODUCTION 

This memo describes the strategy currently employed by the 
Multics Development Center (MDC) to correct software problems. 
The strategy is composed of two parts: methods for fixing 
reported problems; and methods for getting the fixes to customer 
sites. 

have identified problems with the 
in the level of maintenance provided 
frequency at which fixed software was 
To address these problems, MDC is 

In the past, customers 
maintenance strategy, both 
for the software and in the 
provided to the field. 
starting to use a revised software maintenance strategy. 

Several aspects of the strategy are experimental in nature. 
During the next six (6) months, these experimental approaches 
will be scrutinized for their effectiveness in dealing with C&F 
problems. This MTB proposes criteria for evaluating 
effectiveness. 

A subsequent MTB will describe the observed effectiveness of the 
experimental approaches. Publication of the results MTB is 
scheduled for October, 1982. It will either recommend permanent 
adoption of the experimental approaches used during the study, or 
it will recommend changes to the studied approaches (and perhaps 
further study) based upon the results achieved during the six 
month study period. 

METHOD FOR FIXING PROBLEMS 

MDC software maintenance procedures stem from the development 
process used in the Multics Development Center. For each set of 
software modules, one group of people handles all aspects of the 
development process, including maintenance. Such development 
teams are always small, often consisting of only one person. 

Multics Project internal working documentation. Not to be 
reproduced or distributed outside the Multics Project. 

- 1 -



MTB-584 Multics C&F Maintenance Study 

Software maintenance is an integral part of the software 
development process. Maintenance activities fall into two 
categories: maintenance of software whose development is 
continuing (active software); and maintenance of software no 
longer under development (dormant software). This MTB primarily 
addresses the maintenance of dormant software, although 
maintenance of active software is briefly described. 

Maintenance of Active Software 

Maintenance of an active software product is performed by the 
development team for that product. Problems identified during 
one development cycle are corrected during the next cycle. 
Development cycles are kept short so that the few problems which 
reach the field are corrected in a timely manner. For example, 
in Multics Release 10, problem fixes will be released every 6 
months as part of a complete Multics release package. 

The cost of product maintenance is minimized by having the 
development team perform maintenance activities as part of the 
normal development cycle. This strategy also provides incentives 
for the development team to avoid introducing new problems. 

Maintenance of Dormant Software (An Experimental Approach) 

Maintenance of dormant software is handled by a special Software 
Maintenance team within the Multics Development Center. This 
team corrects problems in one of two ways: maintenance may be 
performed on behalf of the maintenance team by someone from the 
original development team; or it may be performed by a 
maintenance team member whose primary task is correction of 
problems in dormant software. 

In 1982, the Software Maintenance team was shifted from Cambridge 
to Phoenix, and more resources were applied to address the 
maintenance of dormant software. As part of their support for 
new hardware, Phoenix personnel have increased their expertise in 
hardcore supervisor and related functions. This added expertise, 
plus their knowledge of the user environment, makes these people 
well-prepared to deal with the software maintenance function. 

EFFECTIVENESS OF DORMANT SOFTWARE MAINTENANCE 

This approach to maintaining dormant software is not inherently 
experimental. We've used a similar approach for several years. 
However, both customers and management have become concerned over 
the increasing number of dormant software problems. 

- 2 -



Multics C&F Maintenance Study MTB-584 

MDC has increased the resources applied to correction of errors 
in dormant software. For example in 1981, MDC applied less than 
.5 man year to such maintenance. In 1982, this figure has been 
increased to 2.5 man years, distributed among 5 people in the MDC 
C&F project. 

Increasing resources applied to dormant software maintenance is 
an experimental approach. MDC will evaluate the effectiveness of 
this approach using several criteria: 

(1) Currently, there are about 450 Trouble Reports (TRs) 
relating to dormant software. 200 of these report 
problems and the remaining 250 suggest enhancements to 
dormant software. The maintenance strategy will be 
judged effective if 100 of these TRs (63 problems and 37 
suggestions) can be resolved by the October 1, 1982. 

(2) If the rate of entry for new problems is fasier than the 
rate at which the problems can be corrected, then MDC 
will still not be solving the maintenance problem with 
the added manpower. The maintenance strategy will be 
judged effective if more TRs on dormant software are 
corrected than are entered during the period from March 
1, 1982 through October 1, 1982. 

METHOD FOR DISTRIBUTING FIXES 

In parallel with increased manpower applied to fixing problems, 
MDC is trying several experimental methods to improve 
distribution of fixes to the field. These methods are aimed at 
providing better maintenance support of Multics software to 
customer sites. 

The Distribution Problem 

In the past several years, MDC has distributed fixes to customers 
only as a part of .each major Multics software release (eg, MR7.0, 
MR8.0, MR9.0). Because major releases are separated 12-18 months 
apart, the fix cycle (from the time a problem is reported until 
the fix reaches the customer site) for problems could be a year 
or more. Such lengthy fix times have led to customer 
dissatisfaction with the maintenance level of Multics software. 

Because fixes were distributed only with major releases, there 
was little that MDC could do to reduce fix cycle times seen by 
the customer. Even when a problem fix was available on System M 
one month after being reported, the fix did not reach the 
customer until the next major release. 

- 3 -



MTB-584 Multics C&F Maintenance Study 

Of course, certain critical problems encountered by customers had 
to be fixed immediately to keep the customer systems running. 
Customers reported such problems directly to MDC. Problem fixes 
were generated by developers (interrupting their normal 
development activity) and transmitted from System M to the 
customer site via dial-out (or in rare cases via a revised system 
tape). However, the high cost of this approach (in developer 
interruptions and direct site support interfacing) restricted use 
of this approach to the small set composed of the most critical 
problems. 

Even such highly-personalized attention in providing critical 
problem fixes was not totally acceptable to customers. Critical 
fixes were developed and distributed to customers as they 
encountered the problem. There was no automatic mechanism to 
notify customers that a critical problem existed and to provide 
the problem fix. So different customers would encounter a given 
problem, spend site resources trying to diagnose or bypass the • 
problem, and then would become disconcerted that they had not 
been notified of the problem or its fix. 

A Possible Solution 

In the past several months, MDC has considered several possible """"' 
solutions for the fix distribution problem. Until now, the most 
promising was to ship a Bug Fix Release (BFR) tape to each site 
on a quarterly basis.(1) The tape would include problem fixes 
for the most recent (major or minor) Multics software release 
(eg, MR9.1). While this scheme is appealing, it suffers from two 
flaws which prevent its adoption at the current time. 

First, creation of BFR tapes would require significant MDC 
manpower (to identify and separate problem fixes from new 
functionality, to store problem fixes separately, to generate and 
test installation instructions for the BFR tape, etc). It was 
felt by many that such manpower could be more effectively applied 
to fixing additional problems, rather than to providing BFR 
tapes. 

The second flaw is that fixes on a BFR tape would not receive any 
significant testing or exposure in the environment of the most 
recent release. LISD does not have a Multics system which runs 
the most recent Multics release. System M and the MIT Exposure 
Site are continually updated with software for the next release. 
So there is no system available to MDC on which testing and 
exposure of BFRs could be performed. 

(1) See MTB-539 for a 
tapes, as well as 
fixes. 

complete discussion 
other methods of 

- 4 -

of Bug Fix Release 
distributing problem 



.. 

Multics C&F Maintenance Study MTB-584 

Because the Bug Fix Release tape strategy will not work MDC has 
de7i~ed to experim~n~ with separate approaches for distributing 
cr1t1cal and non-cr1t1cal problem fixes. 

Distributing Non-Critical Fixes (An Experimental Approach) 

To address the long fix cycle times for non-critical problem 
fixes, MDC will ship problem fixes with major Multics releases 
(eg, MR10.0) and in minor Multics releases (eg, MR10.1, MR10.2). 
For a variety of reasons (smooth implementation staging for new 
software, ease of conversion to new features, etc), it is 
desirable to ship a complete set of system software (rather than 
just incremental changes) with each minor release. By including 
problem fixes in minor releases,, these problem fixes will be 
available to customer sites at six-month intervals. This 
approach will significantly reduce fix cycle times • 

The approach is experimental because MDC is not certain how it 
will be received by customers. In the past, some customers (who 
run unmodified system software) have asked for more frequent 
Multics releases so they can get problem fixes more quickly. 
Other customers (who tailor system software to meet special site 
needs) prefer less frequent releases because applying site 
modifications to a new release requires significant site 
manpower. Reducing the frequency of new releases reduces the 
conversion manpower required at such sites. 

In an attempt to satisfy both types of customers, MDC is coupling 
the approach of releasing complete software in minor releases 
with a policy of allowing sites to skip some minor releases when 
upgrading from one release to another. 

EFFECTIVENESS OF NON-CRITICAL FIX DISTRIBUTION 

The effectiveness of shipping problem fixes more frequently must 
be evaluated in the context of the overall strategy to ship 
complete system software with minor releases. The basic criteria 
for evaluation (customer acceptability) will be measured 
subjectively from customer feedback received throughout the MR10 
time frame. Shipment of problem fixes cannot be separately 
evaluated because customer acceptance will probably be based upon 
other factors which overshadow the fix distribution issue.(1) In 

(1) Factors which customers might consider in evaluating the ship 
strategy include: costs of installing releases more 
frequently; problems encountered during installation because 
a prior minor release was skipped; and difficulties 
associated with unavailability of problem fixes or new 
features because a site decided to skip a minor release. 

- 5 -



MTB-584 Multics C&F Maintenance Study 

addition, MDC will evaluate the internal impact of the software 
ship strategy on development cycles, cost of preparing more 
frequent releases, etc. Evaluation of such general factors is 
outside the scope of this study. Thus, it will not be possible 
to evaluate the effectiveness of shipping problem fixes with each 
minor release. 

If MDC decides to continue shipping complete software for each 
minor release in the MR11 time frame, then problem fixes will be 
shipped with these releases (primarily because of the difficulty 
in separating problem fixes from new functionality, a problem 
which stems from fixing problems as part of the normal 
development process). 

Distributing Critical Fixes (An Experimental Approach) 

To address· the need for automatic site notification and 
distribution for critical problem fixes, a database describing 
all known critical problems and their associated fixes will be 
maintained online, on system M. Fixes will still be generated by 
MDC developers as new, critical problems are encountered at a 
site. However, once a problem fix is known, it will be placed in 
the online data base as notification to other sites. 

A representative from each site will have access to this data 
base. He can review the list of known problems, and select fixes 
needed by his site. The fixes are presented by comparing the 
original and fixed source. These comparisons are usually small 
enough to be printed on a terminal, and then applied to the 
remote source module by hand. Alternately, MDC can provide 
dial-out or tape transfer facilities for larger changes. 

Appendix A provides a 
database. 

complete description of the online 

EFFECTIVENESS OF CRITICAL FIX DISTRIBUTION 

The effectiveness of the online database approach for notifying 
sites of critical problem and distributing fixes will be 
evaluated subjectively, based upon comments from the site 
representatives who use the database during the study period 
(March 1 through October 1, 1982). The approach will be judged 
effective if it appears from these comments that critical 
problems are being effectively resolved. Comments from site 
representatives will be summarized for inclusion in the results 
MTB to be written in October. 

- 6 -



Multics C&F Maintenance Study MTB-584 

APPENDIX A 

DISTRIBUTION METHOD FOR CRITICAL PROBLEM FIXES 

In order to address the problem of distributing fixes for 
critical problems to all sites (not just to the site which 
encountered the problem), the following approach will be 
employed. 

(1) A new directory, >udd>SysMaint>fixes, will be created on the 
Root LV. This directory will contain a forum meeting which 
announces existence of a critical fix (see item 2), and will 
contain subdirectories which hold the actual fixes (see item 
3). Only SysMaint will have sma on the directory. All other 
projects having a need to examine fixes (eg, Multics, MCOBOL, 
Doc, Pubs, SitsSA, TR) will have s access to the directory. 

(2) A forum meeting, Critical Fixes (fixes), will be created in 
>udd>sm>fixes, with links to it ~laced in >udd>SiteSA>sam 
(where uclog lives). Only SysMaint will be able to add 
transactions to this meeting. All others in the list above 
will be able to read these transactions, but not add to the 
meeting. 

All transactions in the meeting will announce a critical fix 
to be distributed to the field. The transaction number for a 
fix announcement will be used to identify that critical fix. 

Comments/discussion of any given fix will occur in the uclog 
meeting, to which SiteSAs and others have write access. 

(3) For each fix, the announcing transaction will identify the 
following items: 

- symptoms of the problem (using wording to allow keyword 
searches) 

- description of the actual problem 
- releases in which problem is known to exist 
- modules involved in fix 
- type of fix (eg, cpa, new source module, etc) 
- releases to which fix applies 
- pathname(s) of the fix directory 

- 7 -



MTB-584 Multics C&F Maintenance Study 

(4) Subdirectories will be created under >udd>sm>fixes for each 
release for which fixes are available (eg, 
>udd>sm>fixes>MR9.0). Access to these subdirectories will be 
the same as on >udd>sm>fixes. 

(5) For each fix which applies to a given a release, a 
subdirectory will be created under that release's directory 
(eg, >udd>sm>fixes>MR9.0>fix 1). Access on the directory and 
to segments in the directory will be the same as on 
>udd>sm>fixes. An exec com will be provided for creating 
these directories, setting ACLs/IACLs, etc. All segments 
associated with the fix (eg, cpa output, copy of the original 
source, copy of the modified source, etc) will be placed in 
that directory. If a fix applies to several releases, links 
to the fix directory in one release directory can be placed 
in other release directories. 

~ 

(6) After the first such fix is announced, I will place a 
transaction in uclog announcing: the existence of the 
Critical Fixes meeting; and ground rules for its use and for 
commenting on transactions contained in the meeting. I will 
also update the SiteSA guidelines mail which we send to new 
SiteSAs to include a discussion of this fix distributio1~ 
mechanism. 

(7) One of our concerns is that developers occasionally encounter 
problems (on System M, at MIT, at CISL, or in chang1ng the 
code themselves) which would warrant use of the above 
mechanism (critical fix distribution to all sites). To 
address this concern, an MTB discussing our overall C&F 
Maintenance Strategy will include a suggestion to developers 
to notify MSS of any changes they are making which would 
warrant a critical fix, in addition to their normal 
installation on System M for the upcoming release. I'll also 
include such plea in the uclog announcement, since many of 
the affected developers attend uclog. 

(8) Frank Martinson is considering the possibility of sending a 
letter to all sites announcing this distribution mechanism, 
and encouraging their use of the SiteSA project for this and 
other reasons (eg, reporting site status, reporting TRs, 
discussing problems in uclog, etc). 

- 8 -


