
mxload

A Portable Package For
Reading Multics Backup Tapes

User’s Manual

mxload Release 1.0

1 December 1988

© 1988 Oxford Systems, Inc. All Rights Reserved

INTRODUCTION

The mxload package is a set of programs for interpreting data from backup tapes created on a
Honeywell Multics system (using the Multics backup_dump command) on a wide variety of tar-
get systems. Throughout this manual, “the mxload package” refers to the entire set of programs,
whereas “mxload” alone refers to the reloading program itself. The rest of this manual contains
the following sections:

Data Formats and Conversions
Describes how mxload treats the data it reads from tape, how it converts ASCII and binary
files, and how it treats special Multics data formats (mailboxes, archives, Forum meetings).

Using the mxload Package
Describes the programs making up the package and how they are used. Also describes nam-
ing conventions for reloaded data and the format of the reload map.

Using the Standalone Utilities
Describes the standalone programs for manipulating Multics archives, mailboxes, and
Forum meetings.

Control File Syntax
Describes the control file used to specify options, pathnames, and name translations for
batch-style use.

Installation
Describes files and directories on the mxload distribution tape and how to install them.

Release Notes
Miscellaneous notes on the current release of mxload.

Typographic Conventions

In the text of this manual, use of bold font identifies UNIX commands, filenames, and, in general,
any string interpreted or produced literally by a target system. The italic font is used to indicate
parameters which must be replaced before use. The listing font (in the text) indicates a Multics
command, subroutine, pathname, and, in general, any string interpreted or produced literally by
Multics. In examples (set off from the text), the bold listing font is used for user input (to the tar-
get system, or, sometimes, to a Multics system). When an example includes expected output, that
is shown in listing font.

Wherever possible, this manual does not assume any particular target system. However, since
many features (such as user ID translation) are specific to UNIX systems, the SunOS version of
mxload is used in all examples. When running on other (non-UNIX) systems, the commands may
have different syntax, file names may be different, etc.

UNIX is a registered trademark of AT&T Bell Laboratories. mxload is a trademark of Oxford Systems, Inc. Multics is
a registered trademark of Honeywell Bull, Inc. MS-DOS and PC-DOS are registered trademarks of Microsoft, Inc.
SunOS is a trademark of Sun Microsystems, Inc. Sun-2 and Sun-3 are registered trademarks of Sun Microsystems, Inc.

Oxford Systems, Inc. - 1 - Release 1.0: 88-12-01

DATA FORMATS AND CONVERSION

mxload and its standalone utilities are primarily in the business of converting from Multics data
formats to some form usable on the target system. This involves both simple conversion from
9-bit Multics bytes to 8-bit bytes, and complex unpacking and conversion for special Multics for-
mats such as archives and mailboxes. This section discusses the details of such conversion, but
the actual conversion specifications are described in Control File Syntax, below.

Data Formats

Because Multics data is composed of 9−bit bytes, and mxload is designed for systems using
8−bit bytes, Multics data must be converted to an appropriate corresponding form as it is
reloaded. For byte-oriented data, such as ASCII text, each Multics byte is converted to a corre-
sponding byte in the new file; otherwise, the conversion is bit-oriented. In addition, mxload rec-
ognizes several special Multics data formats (such as mailboxes and archive segments) and, by
default, converts them automatically into an appropriate form when reloading. Statements in the
mxload control file can override any of the default conversions.

mxload recognizes two basic formats for Multics data: 9−bit binary and 8−bit ASCII1. When
reloading Multics files (“segments”, in Multics terminology), mxload examines the file’s contents
to determine which format is appropriate. In general, if none of the 9−bit bytes in the original
Multics data has the high-order bit set, the data is treated as 8−bit ASCII, and the low order 8 bits
of each 9−bit Multics byte are reloaded into an 8−bit byte in the reloaded file. This is specified as
8bit conversion.

If the data is not 8−bit ASCII ASCII, it is treated as 9−bit binary: the 8 high-order bits of the first
Multics byte are reloaded into the first byte of reloaded data; the second byte of reloaded data has
as its high order bit, the low-order bit of the first Multics byte, and as its 7 low-order bits, the 7
high-order bits of the second Multics byte, etc. This is a “big-endian” view of byte ordering, and
converts each string of 8 Multics bytes into 9 8−bit bytes. This is specified as 9bit conversion.

9−bit binary conversion is best illustrated by the following diagram:

Multics Data (Eight 9−bit bytes)
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

282726252423222120 282726252423222120 282726252423222120 282726252423222120 282726252423222120 282726252423222120 282726252423222120 282726252423222120

2726252423222120 2726252423222120 2726252423222120 2726252423222120 2726252423222120 2726252423222120 2726252423222120 2726252423222120 2726252423222120

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Reloaded Data (Nine 8−bit bytes)

In addition to being converted in this bit-oriented format, 9−bit binary data can also be converted
to 8−bit ASCII format by stripping the high-order bit from every byte. This can be performed
manually after a file has been reloaded (see the mxascii manual page in the appendix) or by an
appropriate convert statement in the mxload control file. This is specified as 8bit conversion.

1 Strictly speaking, 8−bit ASCII data is not ASCII, since the ASCII character set includes only those with values from
0 to 127 (decimal). However, it is a convenient term, and throughout the mxload documentation, the term “ASCII”
refers to 8−bit ASCII (byte-oriented) data, and “binary” refers to 9−bit binary (bit-oriented) data.

Oxford Systems, Inc. - 2 - Release 1.0: 88-12-01

The “primitive” conversion types are 8bit, 9bit, 8bit+9bit, and discard. The 8bit conversion
type converts byte by byte, discarding high-order bits as needed. The 9bit conversion type con-
verts in bit-stream form, as above. The 8bit+9bit conversion type produces two files for each
Multics input file: one in 8bit form, the other in 9bit form, distinguished by the suffixes #8b and
#9b. Finally, the discard conversion simply discards the Multics data, useful when it is clear that
there will be no use for keeping it (such as Multics object segments). The mxascii standalone
utility may be used to force 8bit conversion on a file reloaded as 9bit; the opposite direction is
not possible, of course.

Special Multics File Types

The following Multics file formats are supported either by mxload, by the standalone utilities, or
both: archive segments, mailbox segments, and forum meetings. Multics multi-segment files and
non-ASCII files may also be manipulated after reloading.

In normal operation, mxload automatically unpacks any archive files that are entirely 8-bit ASCII
into corresponding directories containing all the archive’s components but reloads the other spe-
cial formats, including archives with any components requiring 9bit conversion, as 9bit data.
Archives are unpacked recursively: if an archive component is itself an archive, it, too, is turned
into a directory and unpacked.

When requested for mxload, or when performed standalone by mxmbx, mailboxes are unpacked
into a file or files containing the individual mail messages. Several options are available for this
conversion; see mxmbx for details. When a mailbox is unpacked, special header lines are pre-
fixed to each message to indicate the original sender, access class, and time of the message (i.e.,
the data from the mseg_return_args structure). For efficiency, mxload by default simply reloads
mailboxes as files and requires that they be unpacked manually by mxmbx.

Multics Forum meetings are reloaded as UNIX directories by mxload, but must be unpacked man-
ually afterward. This is necessary because a Forum meeting (or any multi-segment file) may be
split across two tapes, and mxload has no way to determine that the complete meeting has been
reloaded. Options similar to those for mailboxes are available for this conversion; see mxforum
(in the appendix) for details.

Multics multi-segment files (MSFs) are also reloaded as UNIX directories by mxload, but no
automatic processing is available. An MSF created by vfile_ in stream_output mode (such as by
file_output or crossref) can be turned into a UNIX file by using the cat(1) command to concate-
nate its components.

A non-8bit file reloaded as 9−bit binary may be converted by stripping off the high-order bit of
each byte using the mxascii utility.

Oxford Systems, Inc. - 3 - Release 1.0: 88-12-01

USING THE MXLOAD PACKAGE

There are three basic operations that can be performed by the programs comprising the mxload
package: reloading a tape, listing a tape’s contents, and unpacking or converting data already read
from a tape. These operations are performed by the following programs:

mxload Reload specified files and directories from a backup_dump tape (or file image).

mxmap List the contents of a backup_dump tape (or file image), optionally displaying all
Multics segment and directory attributes, names, ACLs, etc.

mxarc For a Multics archive file already reloaded with mxload, extract components, list the
contents, or unpack into an archive directory.

mxmbx For a Multics mailbox segment already reloaded with mxload, unpack into a file or
files containing all the individual messages.

mxforum Like mxmbx, but unpacks a Multics Forum meeting (reloaded as a directory and
several files) into a file or files containing all the transactions from the meeting.

mxascii For a file already reloaded with mxload, converts from 9-bit binary format to 8-bit
ASCII form.

The primary function of the mxload package is reloading Multics data, and most of this section
describes how mxload itself is used. The next most important program is mxmap, which is
described following mxload (see Reload Map Format, below, and the mxmap manual page in the
appendix). Finally, mxarc through mxascii are described as a group (see Using the Standalone
Utilities, below).

Complete interface descriptions of each program are provided by the UNIX-style manual pages in
the appendix at the end of this manual. The descriptions here are intended as examples and gen-
eral guidance, not as a complete reference.

Styles of Use

mxload supports two different styles of use: interactive and batch. The “interactive” style, where
mxload is controlled primarily from command line options, is intended for simple reloads of
entire subtrees, where the standard conversion defaults are satisfactory and the user name conver-
sion is not important.

In the “batch” style, mxload is controlled by statements in one or more mxload control files.
This is intended for selective reloading, where an entire Multics hierarchy, containing data
belonging to many users, is reloaded into a corresponding hierarchy on the target machine. For
batch operation, the control files can be used to specify translations from Multics identities to
appropriate owners on the target machine, and to select multiple subtrees (or individual files or
directories) for reloading into specific new locations.

In both styles of mxload (and mxmap) use, only one tape is processed at a time. When a tape is
finished, the mxload command terminates; a new tape must then be mounted, and the command
issued again, if more data is to be reloaded. Because UNIX systems lack a standard tape handling
interface, it is not possible for mxload to handle multiple tapes itself. Instead, this must be
accomplished by invoking mxload repeatedly.

Oxford Systems, Inc. - 4 - Release 1.0: 88-12-01

By default, mxload reads the entire tape looking for data to reload. The −f option2 may be used
to cause mxload to exit immediately after it has reloaded the requested data, rather than looking
for additional copies later on the tape. This option should be used when reloading specific objects
from a tape, rather than the tape’s entire contents, as otherwise, mxload will read the tape through
to the end looking for additional copies even after satisfying the requests for reloading specific
objects.

WARNING: mxload is intended primarily for use on “complete” backup_dump tapes. Attempt-
ing to reload an “incremental” or “consolidated” tape will create multiple copies (with different
names; see Reload Name Translation, below) of objects that appear more than once on the tape.

By default, mxload writes a map of everything reloaded to standard output. This map gives each
object’s Multics pathname, its date/time modified and date/time used, its size, its object type and
mxload conversion type, and the UNIX pathname where the object is being reloaded. If desired,
this map can be directed to a different file or to files in each reloaded directory, and the amount of
information in the map may be adjusted.

Examples of mxload’s Interactive Style

In interactive style, the most common operation is to reload some Multics subtree into a new loca-
tion in a UNIX file system. Some examples:

mxload /dev/rmt0 ’>udd>ATMOS>Dillman’ /usr/dillman

This will reload Ms. Dillman’s Multics hierarchy into a corresponding UNIX directory (which is
created if it does not already exist). All the file permissions will be set to the UNIX default (using
the UNIX process’s umask(1) value), and all the files will be owned by the process running
mxload (Ms. Dillman’s, presumably). The Multics data is read from the tape mounted on the
mt0 device (as with most UNIX tape operations, the name of the “raw” device should be used).
Note that in this, and all other examples, the Multics pathname must be enclosed in quotes,
because the “>” characters are special to the UNIX shell.

mxload -g map1 /dev/rmt0 ’>’ .

This will reload everything on the tape into directories under the current working directory. One
might do this to reload an entire tape, and then use UNIX commands to redistribute the data it
contains. Permissions and ownership will still have default values. The −g option directs the
reload map into the file called map1, also in the current working directory.

mxload -n -c uid_list.mxl /dev/rmt0 ’>user_dir_dir>ATMOS’ /usr3

This would reload all the ATMOS project home directories into the /usr3 file system, and restore
file ownership and permissions as specified by the statements in the mxload control file named
uid_list.mxl. The −n option suppresses generation of any maps.

dd if=/dev/rmt0 of=tape_file bs=4680 files=50
mxload -lx tape_file ’>udd>TX1’ /usr1 ’>udd>TX2’ /usr2

2 NOTE: The −f option is not supported in release 1.0.

Oxford Systems, Inc. - 5 - Release 1.0: 88-12-01

This example shows how to request multiple subtree reloads on a single command line, and also
illustrates how mxload’s input can come from a file, rather than a physical tape. The dd(1) com-
mand is used first to copy the contents of the tape into a file (see Notes on Using Disk Files,
below), then mxload is used to reload some Multics subtrees from that file. The −lx options
cause mxload to write map files in each directory reloaded (−l) and to include the “eXtremely
verbose” (−x) information about all the Multics attributes.

Example of mxload’s Batch Style

The batch style is more difficult to illustrate, because the heart of the matter is the contents of the
control files, which are not shown here. Several sample control files are included on the installa-
tion tape; see Control File Syntax, below, for details of control file syntax. This example illus-
trates the mxload command syntax for batch style operation:

mxload -c dir_list.mxl -c uid_list.mxl -g full_map -v

This assumes that a list of data to be reloaded is specified by several subtree (or file or directory)
statements in the file dir_list.mxl. It also assumes that uid_list.mxl contains a set of owner and
group statements for converting Multics Person-IDs and Project-IDs to UNIX owner and group
IDs for the files being reloaded. The -g and -v options are used to create a verbose map in the
working directory.

This example illustrates the case where a large Multics hierarchy is being reloaded wholesale into
a UNIX system, with individual person and project directories being redistributed to new homes in
the UNIX file system. Typically, the dir_list.mxl file would be set up by making a map of the
tape (with mxmap, or by looking at the original Multics backup_dump map), planning the new
UNIX file system organization in advance, and then reloading data from all the tapes from a com-
plete backup_dump of the Multics file system. Actually, the command line in the example would
be issued many times, once for each tape to be reloaded, and each time, it would reload more data
and append to the map.

Reload Name Translation

On some target systems, the maximum length or permitted character set for filenames is insuffi-
cient to represent Multics names. In these cases, characters must be translated and names short-
ened. The supported name types are described in the following table (these are all keywords for
the name_type statement in an mxload control file; see Option Statements, below):

BSD This applies to SunOS and 4.2/4.3 BSD UNIX systems. These have practical length
limitations (individual names of up to 256 characters are permitted). To accommodate
the deficiencies of UNIX shells in handling special characters, both single quotes (’)
and double quotes (") are translated to hyphens (-). Because slash (/) is used as the
UNIX pathname separator, it, too, is translated to a hyphen (-). Greater-thans (>) in
Multics pathnames are (implicitly) translated to slash (/) in UNIX pathnames. Null
characters in Multics names (a rarity) are also translated to hyphens (-). All other
characters are left unchanged in UNIX pathnames.

SysV This applies to System V UNIX systems. All the same translations are made as for
BSD, but an additional limitation of 14 characters maximum name length is applied.

Oxford Systems, Inc. - 6 - Release 1.0: 88-12-01

A Multics name longer than 14 characters is truncated (first) to 14 characters. If this
results in a conflict with any existing file, it is then trimmed to 12 characters, and each
of the numeric suffixes #0 to #9 is applied, until one results in a name that does not
conflict with any existing files. If that attempt is unsuccessful, another character is
trimmed from the Multics name, the suffixes #10 to #99 are tried, and so forth.

MSDOS This applies to PC-compatible systems running MS−DOS or PC−DOS (version 2.0 or
later). The restrictions here are much more stringent: an 8-character name plus a
3-character extension. The first and last components of the Multics name are used (if
there is only one, the MS−DOS name has no extension). If a name duplication occurs,
the numeric suffixing described above for SysV is done on the first name component
(which is first truncated to 8 characters, then to 6, then 5, etc.). Multics names are also
translated to upper case to become MS−DOS names, and all characters except letters,
digits, dashes, and some others are translated to hyphens.

CMS This applies to systems running IBM VM/CMS. These restrictions are very similar to
the MS−DOS restrictions, except that the extension is 8 characters instead of only 3.
VM/CMS reloads must specify the reload flat; statement, since no directories are
available.

Ordinarily, mxload is compiled with the appropriate value for the option for name conversion,
and the name_type statement need never be used. If name_type is used on a system that cannot
support the resulting type of names, the results will be surprising.

Reloading Directories

There are two important ways in which the reloading process differs from a Multics backup_load
operation: what gets reloaded, and how names are translated during the reload. For the most part,
these differences are invisible, but some possible problems are described below.

A Multics backup_dump tape contains some records describing directories and other records
describing segments. Each segment and directory on the tape is identified by its full Multics path-
name, with all parent directories back to the root of the dump identified by primary name. If the
backup_dump tape is from a complete dump, the root of the dump is usually the real root direc-
tory. If, however, the tape was created by an explicit backup_dump command that specified a
pathname, the root of the dump is the pathname that was specified to the command.

It is important to understand how data is stored and named on a backup_dump tape because
mxload only understands the pathnames stored with the segments themselves. Although the
Multics retrieve command can, in some circumstances, handle pathname components that are not
primary names of directories (by reference to the hierarchy or by reading directory records from
the tape), no such capability is provided in mxload. If a segment or subtree is specified by name
for reloading by mxload, the name specified must match the name on the tape, which generally
means it must consist entirely of primary names. If there is any question about pathnames on a
tape, mxmap can be used to display them.

The other important difference between mxload and the Multics retrieve command is that
mxload does not reload directories. Although there are records on the tape for Multics directo-
ries, mxload ignores them, and instead creates directories on the target system as needed; that is,

Oxford Systems, Inc. - 7 - Release 1.0: 88-12-01

whenever a pathname on the tape includes a directory that does not (yet) exist on the target sys-
tem. Only Multics segments are actually reloaded from the tape. Neither directories nor links are
reloaded from the tape.

The effect of this is that directories are created on the target system only as needed, with their
names appropriately translated from the Multics pathnames. If a directory already exists on the
target system, it will be used, and its attributes (permissions, ownership, etc.) will remain
unchanged. If a directory does not exist, it will be created the first time it is needed for reloading
a segment. When a directory is created like this, its access attributes (permissions, ownership)
will be set the same as those of the file being created, not to the directory’s attributes on the dump
tape. The newly-created directory’s access and modification times are never set explicitly, but are
simply the time it is accessed or modified during the reload.

Reloading Directories: Access Control Problems

Ordinarily, this directory creation algorithm generates the desired results, but it will occasionally
cause incorrect ownership or permissions to be set. These problems are serious only when (A)
mxload is being run by super-user, and (B) mxload is performing translations from Multics per-
son and project names to user and group IDs on the target system.

Because a directory’s attributes are taken from the first object that causes it to be created, a direc-
tory containing segments belonging to several users may have incorrect permissions or ownership
set. The same incorrect setting may occur for parent directories further up in the hierarchy; for
instance, if mxload is reloading from the root (>) and the first item on the tape is several levels
down in >udd>INCO>Jenkins, all the directories created on the target system (udd, INCO, Jenk-
ins) will be created as if owned by Jenkins, rather than with the attributes they had on the Multics
system. This may result in unintentional granting access to directories created during a reload;
however, since UNIX access control depends on the object’s permission bits alone, this will not
grant excessive access to reloaded objects. The only unintentional access that may occur is such
objects may be deleted. If this is a problem, the top-level UNIX directory for the reload should be
protected against unintended access by manually restricting its permissions before the reload, thus
cutting off access to anything below it.

Reloading Directories: Name Problems

The other problem that the directory creation algorithm causes is in name conflicts. This occurs
when the target system has short or restricted names (and thus is not a problem for systems with
BSD name translation). Because directories on the target system are used if they already exist,
with no conflict handling, two different Multics directory names (such as very_long_name_1 and
very_long_name_2) that translate to the same target name (such as very_long_name on systems
with SysV name translation, which are restricted to 14-character names) will refer to the same
directory on the target system. The effect of this is that segments from the two different Multics
directories will be reloaded into the same directory on the target system; if the segments have the
same names, the usual name conflict handling will be used to make them different.

This usually isn’t a problem, because such name limitations have to be dealt with throughout the
reload. Unfortunately, there is no way for mxload to detect automatically when this happens,
although it will be evident from examining the reload map.

Oxford Systems, Inc. - 8 - Release 1.0: 88-12-01

The underlying cause of this is that mxload processes backup_dump tapes one at a time, whereas
Multics processes them as a set. Thus, when mxload starts reading a new tape, it knows nothing
about what has been reloaded already, and it can’t tell whether a directory name conflict is caused
by an actual conflict, or simply results from the directory already having been reloaded from a
previous tape.

WARNING: On UNIX and MS−DOS systems, a Multics directory named “.” or “..” will have its
contents loaded into the current (or parent) UNIX directory from which the mxload command was
issued, rather than creating a new directory. This results from the special interpretation placed on
those names by UNIX and MS−DOS. A Multics segment with one of those names will not be
affected, as it will be treated as an ordinary name conflict and be given a new name.

Reload Map Format

The mxload and mxmap programs can generate a map showing the contents of a tape. Tw o
options, −v and −x, control the amount of information written to the map.

The mxmap program always produces a map, writing it to standard output.

The mxload program produces a map unless requested otherwise by the −n command line option.
By default, the map is directed to standard output. The −g option may be used to direct the entire
map to a specific file, and the −l option may be used to write the map into a set of local map files
named mxload.map, one for each directory reloaded, in the each reloaded directory.

By default, the map is produced in a short form that lists each reloaded object on a single line,
beginning with a single space, containing the object’s original Multics entry name, its length in
Multics pages (4K byte units), its type (SEG, DIR, or LINK), its Multics date-time-contents-mod-
ified, and its Multics date-time-used. An object line will be preceded by a line giving the absolute
pathname of its parent directory if the object has a different parent than the previous object in the
map. The parent directory lines start in the first column, and thus begin with ">" rather than a
space. Optionally an object’s line may be followed by additional lines (each beginning with two
or more spaces) giving details about the object’s attributes.

Tw o options control the amount of information in the mxload map. The −v (“Verbose”) option
produces the following information, in addition to the default described above:

the object’s additional names on Multics;
the full UNIX pathname into which the object was reloaded;
the conversion technique used to reload the object (see Data Formats and Conversion, above)
the UNIX permissions, owning user ID, and owning group ID;
the object’s Multics author and bit count author;
the object’s Multics bit count and length in K bytes; and
the object’s Multics ACL.

Note that mxmap listings do not include the UNIX pathname, the conversion technique, or the
UNIX permissions, user ID, or group ID.

The −x (“eXtremely verbose”) produces the following information in addition to that produced by
a −v listing:

Oxford Systems, Inc. - 9 - Release 1.0: 88-12-01

the object’s Multics date-time branch modified;
the object’s Multics safety switch;
the object’s Multics current length and records used;
the object’s Multics unique ID, in octal;
the object’s Multics ring brackets;
the object’s Multics access class, in octal, and,
in the object’s Multics ACL listing, the binary form of the extended access modes.

The access class is normally listed as "L:CCCCCC", where each character is an octal digit.
L represents the security level (from 0 to 7) and CCCCCC is a six-digit representation of the Mul-
tics categories. If the access class for the object has non-zero bits outside the 21 normally used,
the entire 72-bit access class is displayed in octal, following the L:CCCCCC value. If the access
class is all zeros, it is not included in the listing.

The extended access modes for an object are displayed following the name in each ACL term, in
parentheses. Only the significant non-zero bits of an extended access mode are shown.

Oxford Systems, Inc. - 10 - Release 1.0: 88-12-01

USING THE STANDALONE UTILITIES

Three major standalone utilities are provided as part of the mxload package for handling complex
Multics objects: mxarc for Multics archive segments, mxmbx for Multics mailboxes, and mxfo-
rum for Multics Forum meetings. All of these perform the same basic unpacking functions. A
fourth, mxascii, is used for forcing 8−bit ASCII conversion after a file has been reloaded in 9−bit
binary format.

Complex Object Conversions

Four basic operations are available for complex objects:

−t (table) Generate a table of contents for the object.

−u (unpack) Replace the reloaded object (file or directory) with a directory containing one
file for each of the object’s components (or messages, or transactions).

−r (repack) Extract the object’s contents and re-pack them into a single file (mxmbx and
mxforum only).

−x (extract) Extract contents of the object into the current directory. For archives, individ-
ual components can be extracted.

By default, mxload does not perform any automatic conversion of complex objects except wholly
ASCII archives. It cannot do so for Forum meetings (because they may be split across multiple
tapes, and therefore mxload can’t always recognize them). For the other objects, the reason is
efficiency: it is always possible to perform the conversion manually afterward, and mxload’s goal
is to get the data off the tape rather than to process it completely. For archives and mailboxes, the
default can be overridden by the convert statement in a control file.

The table operation is useful for perusing an object’s contents interactively, often prior to an
extract operation. This is probably more useful for archives than anything else.

The unpack operation, which replaces the reloaded object with its closest UNIX equivalent, is
used primarily for large-scale conversions. Because it creates individual files for each item in the
object, its output is most flexible, but least efficient. As with any operation involving a large
number of files, it may be very expensive to extract 1000 messages from a large mailbox.

The repack operation, which creates a single file containing the object’s contents, is more effi-
cient, but may be less flexible. The single file it creates can be processed with sed(1) or editor
macros to convert, say, a Multics mailbox’s contents into a UNIX mail file.

Oxford Systems, Inc. - 11 - Release 1.0: 88-12-01

CONTROL FILE SYNTAX

Control files determine how mxload loads data from the tape. Statements in the control files
specify loading options and identify objects to be reloaded. When multiple control files are used,
they are processed in sequence, so that a control file of static defaults (such as conversion options
and ownership translations) may be combined with a control file created to list specific objects for
reloading.

Defaults and Control File Order

Actually, the mxload defaults and the command line options for naming subtrees may be thought
of as “virtual” control files, processed in combination with the explicitly specified (using −c) files,
as follows:

mxload defaults
The control file representation of these defaults is shown below. These are processed first
by mxload, and may be modified by options in other control files or command line options.
The default options do not specify any objects to be reloaded.

Explicit Control Files (−c option)
Zero or more control files may be specified on the mxload command line. If none are spec-
ified, the defaults apply. Objects to be reloaded may either be specified here or as com-
mand line pathnames, but at least one object must be specified by a control file or a com-
mand line pathname.

Command Line Pathnames
Pairs of Multics-Path and UNIX-Path arguments may be specified on the command line. In
effect, these are translated into subtree and new_path statements in a virtual control file
that is processed after the defaults and the explicitly specified control files. Only entire
subtrees may be reloaded this way. Because the Multics-Path member of the pair contains
“>” characters, it must be enclosed in quotes on a UNIX system.

Statement Syntax

Statements consist of a keyword and zero or more operands, terminated by a semicolon. The
keyword and operands are separated from each other by whitespace (space, tab, newline). Blank
lines and other whitespace between statements is ignored. Comments may be interspersed any-
where whitespace is permitted using the PL/I syntax (beginning with /* and ending with */).

There are two classes of statements: object statements and option statements. An object state-
ment identifies a specific object to be reloaded: a file, directory, or entire subtree. An option state-
ment affects how objects are reloaded.

There are two types of option statements, distinguished by the case of the keyword in the state-
ment. An option statement whose keyword begins with an upper case letter specifies a default for
all the reloads done with this control file. An option statement with a lower case keyword speci-
fies an option affecting only the previous object statement. All default option statements must
appear before any object statements, and the keywords of object statements must all be lower
case. An object statement may be followed by any number of option statements modifying it,

Oxford Systems, Inc. - 12 - Release 1.0: 88-12-01

though usually only a conversion type is important (in addition to the new_path statement, which
is required).

Object Statements

There are three object statements (subtree, file, and directory) identifying objects to be reloaded,
and one mandatory option statement (new_path) which must follow each object statement. Each
of the three object statements must be followed by a new_path statement that identifies a UNIX
(or other native system) pathname where the object is to be reloaded. These are illustrated below.
Ke ywords are in bold and operands are in italics.

subtree Multics-Directory ;
The subtree statement specifies that Multics-Directory, plus all the files and directories
below it, be reloaded. New UNIX directories will be created (unless the reload type is flat,
see Option Statements, below) corresponding to each Multics directory.

file Multics-File-Name ;
The file statement specifies that a Multics-File-Name be reloaded at the designated location.
This is useful for picking individual items from a tape.

directory Multics-Pathname ;
The directory statement specifies that a Multics-Directory and the files it contains, but not
any subordinate directories, be reloaded at the designated location. This is distinct from the
subtree statement, and is primarily useful when reloading a complete subtree with some
exceptions: the subtree is specified normally, followed by several directory statements with
conversion discard ; statements.

new_path UNIX-Pathname ;
This is properly an option statement, modifying the previous object statement. It specifies
that the object be reloaded at UNIX-Pathname. If new_path is not specified, it is equivalent
to new_path . ; (that is, the object will be reloaded into the current working directory).

If an object is matched by more than one type of statement (e.g., it is named explicitly by a file
statement, but in a hierarchy specified by a subtree statement), the options for the file statement
take precedence over any options in the subtree statement. A file statement takes precedence
over a directory statement, which takes precedence over a subtree statement.

Option Statements

The following option statements are permitted. Each is shown first in its default form (that is, the
form in which it appears in the virtual control file representing mxload’s defaults), followed by its
other forms. Ke ywords are in bold (and the first in the list is always in caps, since it represents a
default), and operands are in italics.

Oxford Systems, Inc. - 13 - Release 1.0: 88-12-01

Convert file-type conversion ;
This specifies how Multics segments of a particular file-type are to be converted on reload-
ing. These conversions are described in detail above (see Data Formats and Conversions,
above). This table identifies the valid conversions for each type.

File Type Conversion Types

ascii 8bit, discard
nonascii 9bit, 8bit, 8bit+9bit, discard
ascii_archive 8bit, unpack, discard
nonascii_archive 9bit, 8bit, 8bit+9bit, unpack, discard
mbx 9bit, unpack, discard3

ms discard, 9bit, unpack
object discard, 9bit

Force_convert 8bit ;
force_convert 9bit ;
force_convert 8bit+9bit ;
force_convert discard ;

Specifies that, regardless of any per-file type conversions specified by a Convert (or con-
vert) statement, newly created UNIX files are to be created according to this specification.
This can be used, for instance, to force conversion of all components of an archive as 8bit,
ev en if that means discarding information from some of them.

List list-name none ;
list list-name global ;
list list-name local ;

Specifies where the lists of added names (if list-name is addname), links and link targets
(if list-name is link), and access control lists (if list-name is acl) are written. The default
(none) is not to create them at all; global causes them to be created in the working direc-
tory of the process running mxload, and local causes a separate list to be created in each
directory reloaded, describing the contents of that directory alone. Multiple list statements
may be specified, one for each of the three valid list-name values.

Person (other) (process) ;
person (other) uid /username ;
person Person-ID (process) ;
person Person-ID uid /username ;

Specifies how to translate the Multics “ownership” of a file to the appropriate UNIX owner
attribute. The keyword (other) (the parentheses are part of the keyword, to distinguish it
from a name) indicates conversion for any names not explicitly specified by a person state-
ment with a Person-ID operand. The (process) keyword specifies that the user owning the
process running mxload should end up as the owner of reloaded objects; by default, all
objects are treated this way. Otherwise, the uid/username form may be used to specify a
particular numeric user ID or name. Although shown here in both its default-setting and
per-object form, it will be very rare for the Person (or Project) statement to be used except
in a long list of translations to be used in setting defaults for large reloads. Access

3 Actually, 8bit and 8bit+9bit conversion can be specified for mbx, ms, and object files, but such conversions are
almost entirely useless.

Oxford Systems, Inc. - 14 - Release 1.0: 88-12-01

restrictions on the target system will usually require that mxload be run by the super-user
in order to set the owner to a specific user ID other than (process).

Project (other) (process) ;
project (other) gid /groupname ;
project Project-ID (process) ;
project Project-ID gid /groupname ;

This is equivalent to the person statement, except that it relates Multics Project-IDs to
UNIX group IDs. Access restrictions on the target system will usually require that mxload
be run by the super-user in order to set the owning group to a specific group ID other than
(process), although this may be less restricted than setting the owner.

Reload hierarchical ;
reload flat ;

A hierarchical reload creates directories when reloading a subtree. A flat reload reloads
all files from a subtree in the directory specified by new_path, “flattening” the reload and
collecting all the files together. This is most useful for target systems with serious name
restrictions, or lacking a hierarchical file system.

Access acl ;
access default ;

The UNIX permission bits for reloaded files are, by default, set to a value derived from the
file’s Multics Access Control List. If the default keyword is specified (instead of acl), then
the process’s UNIX default (the umask) is used instead.

Access_time dtu ;
access_time now ;

The default (dtu) specifies that the time-last-accessed of files will be set to the Multics
date/time used. Otherwise, (now), no explicit action will be taken and the current time will
be used.

Modification_time dtcm ;
modification_time now ;

The default (dtcm) specifies that the time-last-modified of files will be set to the Multics
date/time contents modified. Otherwise, (now), no explicit action will be taken and the cur-
rent time will be used.

Owner author ;
owner bit_count_author ;

This specifies which Multics segment attribute, author or bit count author, id used to deter-
mine the UNIX file’s owner. The Multics Person-ID from the author (or bit count author) is
translated according to the rules specified by the Person statements, and is set on the
reloaded files. If no explicit owner (or group) setting is desired, which is the default, an
appropriate Person: (other) (process) ; statement should be used. It will be rare for the
Owner or Group statement to be used other than to specify a default.

Group author ;
group bit_count_author ;

This specifies how the UNIX file’s owning group is set, like the owner statement. The

Oxford Systems, Inc. - 15 - Release 1.0: 88-12-01

Multics Project-ID is translated to a UNIX group ID by the rules from the Project state-
ments.

Dataend bitcount ;
dataend page_boundary ;

Specifies how the length of a reloaded object is determined. The default, bitcount uses the
Multics bitcount, and should be appropriate in almost all circumstances. This statement
will rarely be used.

Name_type BSD ;
name_type SysV ;
name_type MSDOS ;
name_type CMS ;

This specifies the type of name conversion to be performed. Ordinarily, this is useful only
for testing, as the correct name conversion is usually compiled into the program. For a
detailed description, see Reload Name Translation, above. This statement will rarely be
used.

Oxford Systems, Inc. - 16 - Release 1.0: 88-12-01

INSTALLATION

The distribution tape (or diskette) contains four directories:

source Contains all the source and header files, and a UNIX makefile for compiling them.
Note that all the names are lower-case, including makefile.

info Contains a copy of the source (troff −man) for the manual pages and for this manual
(format with tbl | troff -ms).

misc Contains a handful of test cases, some of which are obsolete or uninteresting; these are
primarily useful as a go/no-go test of the parser.

sun3 If you ordered a Sun-3 binary distribution, this contains a set of Sun-3 binaries for
SunOS release 4.0. For other releases, just recompile.

Distribution tapes are in tar format, written by SunOS release 4.0. Distribution diskettes are in
MS−DOS format.

UNIX Installation

On a UNIX system, installation is very simple: reload the tape, cd to the src directory, update the
makefile appropriately, and type make. The default target is System V, Release 3; one of BSD,
SVR2, or GOULD should be defined in the makefile to change that. On a Sun system, mxload
will automatically be compiled correctly because the compiler defines the symbol sun, which
implies BSD.

The make will create mxload, mxmap, mxarc, mxmbx, mxforum, and mxascii, which can then
be installed in a local binary directory. No special permissions or ownership are required.

If problems occur, we expect they will be straightforward to solve. Feel free to call Oxford Sys-
tems, Inc. for assistance in porting (617-646-8619).

Non-UNIX Installation

On a non-UNIX system, it’s much harder. Some special handling is already provided for names,
as is the flat reload option, but those are only the tip of the iceberg. Character set conversions
(i.e., EBCDIC) are not provided for, and mxload’s use of the C library functions may be too
extensive for some systems. The C library usage is, however, much more conservative in this
release than in the earlier beta-test versions.

Versions of mxload for MS−DOS and IBM VM/CMS have been created, though with some
degree of functional impairment when compared to the UNIX version.

Oxford Systems, Inc. - 17 - Release 1.0: 88-12-01

RELEASE NOTES

These notes apply to the December 1988 release (1.0) of mxload, and may change in
future releases.

Notes on Efficiency

mxload is faster, on UNIX systems at least, when its temporary files are in the same file system as
the data being reloaded: the temporary files are rename()’d into place. The environment variable
TMP may be set to indicate an alternative directory, as temporary files are normally placed in
/tmp. This is true of all the programs in the mxload package (except mxmap), not just mxload
itself.

On some systems, tape I/O is hideously slow. This is particularly true of streaming tape drives,
because mxload has to do so much processing for the 9-bit/8-bit conversion in between reads that
it usually can’t keep a tape streaming. If this is a problem, it’s best to copy the tape to disk first
(see Notes on Using Disk Files, below). It may also be possible to use dd(1) with extremely large
block sizes to achieve better buffering, but no experimentation has been done along those lines.

Notes on Error Handling

mxload is not particularly good about handling tape I/O errors. This results mostly from the gen-
eral inadequacy of UNIX tape device drivers, but also from the many different (and incompatible)
drivers on different systems. All mxload does is try to skip bad blocks, and gives up completely
after more than 10 tape errors. If you have trouble reading a tape, it’s probably best to use dd(1)
to copy it to disk and then use mxload to process the disk image. Also, simply retrying mxload
will often clear an error condition, then run to completion successfully, for no apparent reason.

The tape reading code is in multtape.c, and it can actually display quite a few different error mes-
sages. Those, however, are usually the symptom of some problem with the program itself (not
being ported successfully), rather than an actual I/O error.

Notes on Conversion

Unpacking non-ASCII archives and mailboxes is quite expensive in CPU time. It is better to
reload these as 9bit and selectively unpack them later (that’s why the mxload defaults are set up
that way).

Unpacking mailboxes and Forum meetings is generally much quicker into a single large file than
into many small files. Which option is more appropriate depends on how the data is to be pro-
cessed once it has been reloaded.

There is no automatic conversion program for Multics multi-segment files (MSFs). For MSFs
which are just stream output produced by Multics vfile_, the conversion can be accomplished eas-
ily using cat(1) to concatenate the component files (WARNING: beware of MSFs with more than
9 components, because the numeric component names will not sort in the correct order when the
shell does starname expansion; large MSFs must have their components explicitly named in the
correct order). Non-stream MSFs containing structured data may be converted by special-pur-
pose programs written using the subroutines in mxload (mxforum is an example of such a

Oxford Systems, Inc. - 18 - Release 1.0: 88-12-01

program).

If you need to write additional special-purpose conversion programs, mxmbx is probably the sim-
plest program to start from. None of it is really simple, though.

Notes on Using Disk Files

A Multics segment (or MSF) can be created using backup_preattach as follows:

backup_preattach output vfile_ dump-file-name
backup_dump hierarchy-path -debug
backup_preattach -detach

This will create the dump-file-name in a form that mxload can interpret. It will also create a
backup map (!shriekname.backup.map), which must have its bit count explicitly adjusted because
backup_dump leaves it open. An error file (date-time.ef) may also be created if any access errors
occur while dumping. The -debug option disables use of privilege, which is appropriate for all
unprivileged users.

Once created, the dump file can then be transferred to another system by tape or serial transfer
(such as Kermit in binary mode). For either method, be sure not to introduce any unnecessary
conversions, padding, etc. Once on the other system, it should be copied into a disk file which
can then be processed directly by mxload.

If you use dd(1) to read a backup_dump tape onto a UNIX system, you must specify a large num-
ber for its files parameter, since every 128 blocks on a backup_dump tape appears as a separate
file on UNIX. Since there can be around 40,000 blocks on a single 6250 BPI tape, a files value of
400 is probably appropriate.

In general, disk images of backup_dump tapes will be easier (and faster) for mxload to process
than the tapes themselves, and images of backup_dump files easier still. If you’re having trouble,
try some of these alternative transfer techniques.

Notes on Supported Systems

The mxload package is written entirely in the C programming language, and can easily be con-
verted to run on most systems with a C compiler and reasonable approximation to the C standard
I/O library. Because the UNIX file system is relatively similar to the Multics file system, the
mxload package was originally designed for use on UNIX systems. The standard distribution ver-
sion runs on Sun Microsystems Sun-3 systems running SunOS release 3.2 or later; SunOS is a
variant of the UNIX system derived from the Berkeley 4.2/4.3 BSD systems.

In addition to SunOS support, the distributed source for the mxload package includes support for
use on System V UNIX systems and Microsoft MS−DOS and PC−DOS systems (version 2.0 and
later). The primary differences in mxload’s operation on these systems is the handling of names:
whereas SunOS (and all 4.2/4.3 BSD systems) allows file names long enough for any Multics file
name to be converted without truncation, System V UNIX and MS−DOS have limited filename
length and syntax, requiring conversion of Multics names.

Oxford Systems, Inc. - 19 - Release 1.0: 88-12-01

Notes on Non-UNIX Versions

The MS−DOS version of mxload has worked in the past, though it has not been tested recently. It
should be reasonably easy to compile, depending on your C compiler and linker (of course, it’s
mostly useful for testing with dump tape images, since not many MS−DOS systems can read
½-inch tapes). It’s actually pretty useful that way for quick-and-dirty copies from Multics to
MS−DOS, since it understands directory structure and file transfer programs don’t. Just create a
backup tape image on Multics (with backup_preattach), use something like Kermit to transfer it,
and use mxload to unpack it.

A CMS version of mxload has been created and run successfully, but CMS is such a primitive
operating system that many of mxload’s capabilities were eliminated. The standard CMS C com-
piler and library are particularly difficult; the compiler requires escape sequences (in the source
code) for braces and other heavily-used characters, and the standard I/O library functions don’t
come close to meeting the ANSI standard. This is not a job for the faint of heart.

Oxford Systems, Inc. - 20 - Release 1.0: 88-12-01

