
‘ BELL TELEPHONE LABORATORIES B0039
INCORPORATED

ammma Software Tools for Monitoring and oAn= February 15, 1966
Tracing in Multics - Case 39199-l

mom. J. F. Gimpel
l».

MEMORANDUM FOR FILE

PREFACE

'“" With respect to monitoring the performance of the multics
system, the following three tenets seem to be widely held.l Performance monitoring is not only good but essential.

(2 Designing performance monitoring capabilities into
multics should parallel the development of the system itself
so that the necessary hooks can be embedded before the system
is "cast in concrete'.

(3) It is impossible to say (and dangerous to fix) in
advance the specific monitoring which will be required.
These three articles of belief suggested a flexible approach
to performance monitoring; in particular, initial work aimed
at the development of generally usable tools rather than
specific plans to thereby sidestep the seeming paradox posed
by (2) and (3).
The methods developed seem also applicable to debugging and
tracing both system and processes. Thus it may be possiblefor these other system functions to share a common mechanism
even though the interface with the user may differ widely.
A variety of people have made contributions to this work in
the form of suggestions, information and encouragement. Dave
Farber of BTL was responsible for the initial inspirational
impetus. Others include Jerry Saltzer, Don Widrig and D. Wagner

,_x of MIT and Chester Jones and Vic Vyssotsky of BTL.

I. INTRODUCTION

In contradistinction to much of the supervisory software in
the multics system, certain modules concern themselves not
with servicing the user directly but with obtaining information
about the operating system. The information is intended for
consumption by management, system programmers and staff per-
sonnel generally charged with the responsibility of building
and maintaining the facility.

_ 9 _

Experience with project MAC has shown, and it can readily be
imagined, that monitoring the performance of a time-shared
system is more important (and more demanding) than monitoring
the performance of a system where physical input, and physical

,~_ output are centralized, serial and easily managed.

Performance monitoring activities in Multics will probably
serve at least the following purposesl

2

‘Q/§/R

System debugging
Compiling statistics to improve software strategies

(e.g. scheduling algorithm, paging algorithm).
algo
exis
(i.e

1(+)—€

\~/-\;//'\|._|./'\

U1-~ll_c+L/U

(6

) Real-time statistics gathering to affect parameterized

_/D"

E
U1

On-line data gathering for users (provided safeguards
) Off-line and on-line data gathering to affect operations
computer center) policy.
) Long range statistics gathering to aid in the design

of new machines and new software.
time

(7) Data gathering for purposes unforseen at system design

Not only is it true that these purposes do not furnish specific
data to be gathered, but they also imply that one specific form
of data collection will not really suffice.
Consider the following example. Suppose every once in a while
the system strangely and unaccountably does down. Suppose by
standard monitoring techniques it can be determined that the
breakdown is accompanied by a wild uncontrolled growth of the
concealed stack which rapidly fills all of core. The cancerous
growth of the concealed stack may be a symptom of or may be
closely associated with the cause of the system undoing and in
general only further monitoring can really tell. To determine
the precipitating cause may require a great deal of extra moni-toring which under normal use would imply an unbearable amount
of overhead. The happiest circumstance would be if the growth
of the concealed stack could itself trigger this excess monitoring

a-\ The excess monitoring could consist of copying key data bases
which could be "played back" at a programmer's leisure after
the system's collapse, or, could consist of methods to interrupt
and arrest the growth of the concealed stack.

L,

The monitoring and tracing package described in this memo, is
being designed to realize Just this sort of interactive monitoring

1%.

A-~‘

,q\

is

_ 3 _

II. THE MONITORING AND TRACING PACKAGE

The Monitoring and Tracing package (MT-package) will permit
at certain user-designated events certain user-specifiedactivities. An event, for example, can be the call of pro-
cedure P in process A (or in any class of processes) or the
occurrance of one of a class of interrupts or a particular
moment of time. The invoked activity could be the execution
of a procedure, the restarting of a process, or some subset offixed data gathering activities. In all cases the activities
permitted will be dependent upon the events requested and the
user who is requesting the action. Thus a user may request
that procedure Beta be called every time procedure Alpha is
called in his own process for debugging purposes, but unless
he has the necessary authority he may not initiate this actionfor all processes. On the other hand system monitoring and
debugging will generally require control across all processes.
Section III deals with a tentative list of events; Section IV
outlines the activities; Section V deals with the organizational
structure of the package.

III. EVENTS

The power and flexibility of the MT-package will be largely
dependent on the number and kinds of events which the user
can designate. The following list may be regarded as tentative.l. calls and returns to linked procedures

process faults
process and system interrupts

UJIUO‘\U1-ll“

a particular moment of time
the opening and closing of files
intra-segment references

Each of the above classes of events can be further modified.
For example, the call-return event can (and should) be modified
by specifying a class of procedures and a class of processes.
In the simple case of timing a procedure both the call to andreturn from a procedure must initiate activity. Moreover, let
a fault occur within the procedure being monitored. Then anotherroutine is called into play, works for some time, and relinquishescontrol, so that the original procedure resumes its activity at
the point of departure. In this case, both the fault and the
concomitant return must be monitored. These kind of events in
which monitoring activity is to be provoked on two occasionsrather than one are called bi-polar. Those kinds of events in
which activity is provoked just once are called unipolar. For
example a particular moment of time represents a unipolar event.

0

_ A _

IV. ACTIVITIES

Activities prescribed by the user can be of three types.l a subset of fixed data gathering.
3 the restart of a process

’“* (2) the call of a procedure

Though, in a sense, (2) subsumes (1) it will in general require
less authority to specify (1) than to specify (2) especiallyfor system-wide events (i.e., all processes). On the other
hand, for process debugging, a user may specify any arbitrary
procedure provided the events which trigger this activity occur*’“ during his own process.
Type (3) activity requires a call to entry restart in the proc~
ess exchange; in general this activity will require little,if any, privilege. The scheduled process itself may have aself-favorable schedule to guarantee a rapid process switchingif this is needed for certain system debugging and/or monitoring.
But this is left up to the process which is being restarted
and is of no direct concern to the MT—package.

V. GENERAL ORGANIZATION

The MT-package is divided functionally into three areas, viz.control, activity distribution, and collaboration. Generally,
the control section forms an interface with the user, activity
distribution concerns itself with activities, and collaboration,
with events.
CONTROL

The control section of the MT-package (Fig. 1) consists of two
modules working on two data bases.* The two data bases are
called the plan of SYSTEM monitoring (pSm) and the plan of
PROCESS monitoring (pPm). As their names imply, the pSm describes
the monitoring of the system as a whole, while the pPm describes,

A,‘ and in fact controls, the monitoring which occurs within a single

A-Q

process. Hence there is one pSm whereas there is a pPm for each
process.

When a user issues a request to monitor certain events, a call
is made to the MT-manager. The MT-manager checks the request
and either grants or denies permission to carry out the activity.
----¢-___i_.-_,_.

*a half arrow pointing from a module to a data base indicateswriting; the reverse direction indicates reading. A full arrow
as usual is used to indicate a call-return.

. 5

If permission is granted, the information which effectively
mirrors the request is placed in the pSm data base. The MT-
manager sets a flag called the System Monitoring flag (SM-flag)
to indicate that some monitoring activity is to take place.

,\p This flag is not turned off as long as any monitoring activityis being requested.
Although the pSm is immediately updated, the pPm is only period-ically updated, viz. at "process—resume time".* At such times
a suitable system module checks the SM-flag and, finding it ON,calls the MT-planner which prepares the pPm data base. This
preparation may be thought of as recompiling a system procedure
known as the MT-interceptor which is described later.
The pPm is actually a macro data-base consisting of three sub-
bases. The auxiliary linkage section (ALS) for the MT-inter-
ceptor, the auxiliary definitions section (ADS) associated with
the ALS and the collaborator action specification (GAS). The
MT—planner also sets flags to indicate that collaboration is
required.
ACTIVITY DISTRIBUTION

The MT-interceptor serves to receive control at designated
events and to pass on this control to routines which will carry
out the specified activity (see Fig. 2). Its behavior is a
function of the information located in the ALS and ADS. Upon
receiving control the MT-interceptor does the following:l For type-l activity it calls the pm—data gatherer.

(2 For type-2 activity it calls any prescribed procedures
(Pl through Pn in Fig. 2).

(3) For type-3 activity it calls restart (in the Traffic
Controller) to reschedule any prescribed processes.

(H) In the case of bipolar activity it calls the target
procedure. Upon return it repeats (l), (2) and (3).

(5) It returns.
Each time an event occurs for which MT-activity was specified/- (left-hand side of Fig. 2) control is passed to the auxiliary
linkage section (ALS). There, two instructions are executed;
the first sets the base pair bp to the current location and the

--i-___i_-_i_
*This is perhaps not a well-defined notion at the present

time. What is meant here is the time after unlinking occursg,‘ and the process is resumed with its linkage section full offault tag 2 modifiers. This will occur frequently enough for
our purposes because each time a procedure is recompiled the
process must unlink.

,?\

.$\

ak

1%

5

second transfers control to the normal entry point in the
linkage section of the MT-interceptor. Each distinct event(e.g., call of procedure alpha) causes control to pass to adistinct location in the ALS. The MT-interceptor, which is
pure, determines its activity by operating on fixed offsets
from the entrypoint in the ALS. In particular links to type-2activity procedures are located there and the definitions
section for these links are located in the auxiliary definitions
section. A link to the target procedure is also located in the
ALS.

gas COLLABORATORS

Located throughout the system, there must exist a variety of
mechanisms whereby, at appropriate events, control can be
made to pass to the MT-interceptor. These mechanisms will be
called collaborators, and in general, there will be a collaborator
for each event-type. A collaborator will in general operate
upon information in the CAS. For some events, e.g., a moment of
time, the mechanism exists outside the MT-package and is essentially
provided free. On the other hand, for an event such as the call-
return, the mechanism does not already exist and will have to be
written and embedded within the system.

Note that a collaborator, itself, need not gain control on every
event associated with it. For example, in the case of a call-
return event, we can replace the normal linker with a collaborator
called the MT-linker. Suppose, then, that all calls to a pro-
cedure T are to be monitored. If procedure A attempts to call
T a first-time fault will give control to the MT-linker. The
MT-linker checks to see that this procedure is to be monitored.If so, it stuffs the link to T with a pointer to an entrypoint
in the ALS. The pointer to T is placed in the ALS. Thereafter
interception occurs automatically without the necessity of invoking
the collaborator.

Ho-33u5-JFG-so J. F. GIMPEL

Att.

1

An.‘

Ax

C/-11.45 /*'/év/V, u sr/Q5

T- Mu
MO[:'\»6»a,|4" ‘ * a"

' S !‘1- FLAQ

MoDuLE
/1v <‘o»vT/2.01.

Ar ”PRo<c's5-
—/2E5ur1£ " ‘

' fP»»v

0 0 I ‘

4% \ *__' w ‘ ; , J
F¢»\<;s T0 S/4/\/AL
C00/3D/NATO/Q /\C7'/0-V

>““‘ F14 urde 1

T/-/E do/vrmoz. SE'C.T/ON op rue MT-PACKAGE

774/?61z'7' /’l€O€E.Dv!EE
_/F-'0/6 /SIPQLAIZ EVE/~/ms‘

CONTROL
P/-\ss/N6
1-o T‘!-IE
INTER CE/’T'<1‘&

5/vs/v swgwr’

3

_.EI|
1

’ L.....-.. ') -T 7 PE_ Z_

AT 50"’? I I

1 L__W J-1

-.£_

T‘
f

I Mn.

I
‘ a

| I i
I

\

~ A Ac“r|v|-ry
\

> 4- 2.
A j A "*~ A Abs
M T-

M 11
-ro RESTART TYPE" M7-""77

F'\Gur<E 2.

ACT! v / T7 D /s'r'R/£3 1/7"/0/v

