
VIRGINIA POLYTECHNIC INSTITUTE

AND

STATE UNIVERSITY

DEVELOPING CURRICULUM FOR USE IN AN INTERACTIVE

COMPUTATIONAL ENVIRONMENT

by

John Heafner, Computing Center

John A. N. Lee, Department of Computer Science

Sharon A. Shrock, Learning Resources Center

Report No. CS 79004-E

September 17, 1979

-1-

Abstract

The advent of the interactive computer classroom and

laboratory on the campus leads naturally to the increased

usage of the computational facilities in undergraduate

education. This report reviews a number of alternative

plans for the integration of these facilities into various

curricula, and provides outlines for the development of

course syllabi which are appropriate.

Introduction

Referring back to 1955 when IBM introduced the 704

computer, John Backus, the originator of the FORTRAN

language said: " the effect [of] speeding up

operations by a factor of ten left inefficiencies

nowhere to hide." [l] So it is in attempting to use

interactive classroom facilities to supplement the course

offerings in any class; there is no room for the

inefficiencies to hide. As most computer users are aware,

computer systems tend to be very unforgiving, and the

natural tendency of a teacher to "wave off" a difficult

point to be considered at some later point in time is

thwarted by the uncompromising nature of the machine. This

(l] Backus, John, "The History of FORTRAN I, II and III",
Preprints of the Conference on the History of Programming
Languages, ACM SIGPLAN Notices, August, 1978.

-2-

really is not much different from other situations in which

teachers utilize mechanical devices to supplement their

presentations. In fact, if one regards the computer as

merely another experimental device, then teaching in this

environment is not so much different from that of the

science teacher conducting "real

experiments.

The purpose of this booklet is to

opportunities which the interactive

t irne 11 laboratory

examine some of the

laboratories and

classrooms provide, and to lay a groundwork for faculty to

prepare for their effective use of these facilities.

-3-

Table of Contents

Interactive Computing ••.•••........•....................... 6

Batch vs Interactive Computing ••.........•...•.•.•..••..... 11

Interactive Program Development Checklist•... 13

Modes of Usage •..••.. 17

Out of Class Assignments 17

Electronic Submission of Assignments 18

Out of Class Assignments Checklist. 20

In Class Teaching and Experimentation 20

Sample Classroom Learning Assignment •.................. 24

Checklist for Classroom Activity Planning ..•........... 25

Computer Aided Instruction (CAI) •........•.....•....•...... 26

Common or Garden Uses•............................•... 28

Other Uses Checklist ••..........•......•....•.....••.•• 29

The Systematic Design of Instruction .•..••.•..••.•••••.•... 30

Checklist for Systematic Design of Instruction .•....... 40

Evaluation Techniques and Tools 42

System Features Available to assist in evaluation •..••• 43

Resource Scheduling and Allocation•........•.....•..... 44

Room Scheduling .. 44

Resource Allocation (Pie Slicing) •...................•. 44

Computing Center Courses Available •......••........•...•... 4 5

Instructional Development Facilities .••.....•.••........... 46

System Description•........................••.. 55

Available Publications .•................................... 56

-4-

Honeywe l l Information Systems Publications •.•••••..•••• 56

Virginia Tech Computing Center Publications •.•••••••••• 57

Other References •.•.............••••••.••••••.•..••.••.•••• 64

-6-

Interactive Computing

The "Encyclopedia of Computer Science" [2 J defines

Interactive Computing as a mode of processing which supports

programmers who wish to develop programs in real time

correcting errors as soon as the latter are detected by the

computer. Interactive Computing is often combined with the

Time Sharing mode of operation so that several users can

(apparently) simultaneously use the computer system.

Besides providing a tool for programmers, there is a

tremendous potential to be attained in the use of

inter active computation facilities in an educational

environment. Most obviously is the direct use of the

computer for some form of computer aided, directed, managed

or augmented system whereby the actual learning experiences

are not directly gained from an instructor. On a much lower

level, the access to an interactive system can be considered

as simply another tool to be used by students in their out-

of-class activities, much in the same manner as some classes

utilize a batch computational facility. Somewhere in

between these two extremes are many styles of usage of the

interactive computer classrooms, including not only

laboratory-style learning activities, but also enhanced

lectures.

The fundamental difference between a batch system and an

[2] Ralston, A. and Meek, C.L., (Eds), Encyclopedia of
Computer Science, Petrocelli/Charter, New York, 1976.

-7-

interactive system lies in the communication between the

system and the user. A common misconception is that

interactive processing is accomplished as soon as terminals

are added to a system. However, only when the proper

software is also installed so that the user can interact

with the processing during the processing cycle, is the

system truly interactive. Of fundamental concern to the

interactive user is the response time of the system. It has

been found that delays in response of greater than 5 seconds

are intolerable to many users who are used to what is called

"conversational mode" computing. For others who are

are familiar with batch processing, delays

perfectly acceptable. However, where

presented with material to learn,

of 10 seconds

a student is being

certain delays can

distract him from the task. Better interactive systems have

delays which are no more than "conversational pauses", which

are generally regarded by the television industry as 2 to 3

seconds.

The pauses inherent in an interactive/time sharing system

are the result of both hardware and software factors, and

the "friendliness" of the system is almost totally under the

control of the software designer. In the case of

educational systems, the software designer includes the

faculty member who is designing a learning experience for

his students. In this report we include a number of

checklists which we hope will assist the user of interactive

systems to have the system respond to the needs of the user

-8-

wi thout intolerable delays or offensive responses.

As in so many situations, the commercial implemen ta ti on

of interaction is a step behind where the original

interactive systems stood.

Time Sharing System (DTSS)

For example, the early Dartmouth

provided a BASIC environment

where each BASIC language statement was syntax checked on

entry. Thus a student knew as soon as he had finished

typing the line that he had not made any syntax errors. In

1964, this same system provided direct interaction with a

running program so that if an error was found during

execution, the system did not simply abort the run but

instead suspended execution, saving the state of the machine

before the offending statement was executed, and offered the

user the option of correcting the statement there and then.

These corrections were not substituted into the program

immediately but were saved for the user to substitute on

command. Unfortunately such highly interactive features

have been lost in the last 15 years.

The interactive environment provides the user with the

ability to interrogate the status of execution of processors

in a language which is at his level, not the machine's.

Thus octal dumps are replaced by listings of the contents

associated with the various identifiers used in the program,

expressed in the symbolic terms used by the programmer and

in a number representation scheme which is specified in

declaration statements in that program.

There is a danger in using interactive programming as a

-9-

tool in program development in that there is a tendency to

rush into trying things without thinking ahead. Using our

notion of the similarity between the interactive computer

laboratory environment and that of the science laboratory,

it is fair to say that the scientist rarely tries something

just to see what happens; instead he predicts the result and

then verifies his prediction or explains the differences if

any. Dartmouth College interactive laboratory has a large

sign at the front which says:

SITTING AT A TERMINAL IS NO SUBSTITUTE FOR THINKING

and we might add that

USING AN INTERACTIVE LABORATORY IS NO SUBSTITUTE FOR

TEACHING

In a batch environment the user provides the complete set

of processors and data, prays that they are compatible and

launches into a period of uncertainty which can only have

one of two responses; it works or it doesn't. The process

of program or system development in a batch system tends to

be to develop large chunks of program and to test these

simultaneously so as to get out all the bugs. In the

interactive environment it is preferable to develop the same

sys terns piecemeal, to validate each segment separately and

then to combine the segments into a whole only when the

pieces are ready. This is possible because of the apparent

fast turn-around which accompanies interactive processing.

The user does not have to wait for considerable periods

-10-

between development steps.

Different users will have different strategies of

development which may include dividing the problem into

distinct separate modules which will each be developed

separately, or to design an incremental system of

development wherein each stage builds on the previously

validated system.

-11-

Batch vs Interactive Computing

The transfer of systems from the batch environment to the

interactive system requires the addition of many new

features which were not either necessary or feasible before.

The fact that the system is interactive means that the

majority of input will be from the terminal keyboard.

Whereas in the batch system the incorrect input of data is

grounds for the fatal termination of the program, in an

interactive system the recognition of such an error is

merely a cue for the program to request the "proper" data.

The language processing systems within the interactive

system will provide normal error activities, but in most

cases will regard "out of range" data as a cause for the

termination of execution. Thus the developer of an

interactive program must provide his own input validation

routines, testing for data in the appropriate range (which

may be quite different from that which is valid for the

machine) and for requesting a re-input of the data in the

correct form. This latter action may require the user to

re-input a whole line or to merely correct a single item.

There are significant advantages to be gained for "one-at-a­

time" input where the user supplies only one item in

response to each request (suitably output to prompt him) so

that the checking can be accomplished effectively. The

input procedure should also permit the user to enter non­

valid but special data to signal some special action which

-12-

he desires. For example, after entering a set of data the

user may decide to abort the processing of the rest of the

program since he has already recognized some special feature

which invalidates further computation. However, if the

normal procedures which

have been incorporated

request

the user

re-input of

may find

invalid data

himself in a

endless loop from which he cannot escape except by hanging

up the phone or switching off the terminal. Thus an escape

of recognizing the key-word

systems, the use of the

programmed.

"quit" is a necessity. In some

"break" key can be similarly

Output to an interactive terminal needs special attention

also. On one hand the slow speed of a 30 characters per

second terminal can usefully be invoked to place material in

front of a student at about normal reading speed. However,

the same program operating on a 200 characters per second

machine is totally useless; the material passes from sight

so fast that the reading time is lost. Similarly, using a

small video-screen, the amount of useful information that

can be displayed is about 20 lines, anything more than that

being scrolled before the recipient has a chance to do

anything with it. In an interactive system, output should

be kept to a minimum. Where possible an interactive system

should only output key data and then store other generated

information in a location where the user can access it on

demand. For example, it would be far better to plot a graph

of a function and store the discrete data points for

-13-

interactive investigation by the user, than to overwhelm him

with too much data.

Interactive Program Development Checklist

INPUT CONSIDERATIONS

0 Input amount is sufficiently small to be input

from a keyboard

0 Separate input i terns into one-at-a-time

requests

0 Add prompting statements before each input and

give required format where absolutely

necessary (free form input is better)

0 Validate input after each request and repeat

until OK or until it is obvious that the user

doesn't understand the question

0 Add an escape to each input which will permit

user to abort the run

0 Provide an alternative response which is

equivalent to the user asking for more

explanation of the request -- such as "help"

or "?11

0 Consider whether there is a default response

which could be used if the user doesn't care

-- identified perhaps by a response of simply

11 return"

-14-

0 Is any input dependent on intermediate

results? If so ensure output of intermediate

results before requesting input.

OUTPUT CONSIDERATIONS

0 Insert initial output statements to announce

the processor and confirm correct version

0 Reduce output to a minimum

0 Save additional output in file for user

inspection

0 Provide routines for inspection of additional

output or give sufficient documentation to

enable user to use an editor to examine the

remainder of the output

0 Make sure output will fit onto one "frame" of

the terminal

0 Check line length of typical terminal to

prevent "folding" of output

0 Prettyprint

HELP FILES

0 Provide a separate help file for the user to

view before using system

0 Break help file into sections so that user

does not have to view whole file

0 Give section listing in first section

-15-

0 Provide a file for users to report problems

and for others to check on "known" errors

0

INSTALLING THE PROCESSOR

Set access rights to appropriate

(probably read and execute only)

subset

O Give access to appropriate subset of users

0 Protect source and listing from unauthorized

access

0 Validate that version identification in source

and output are same

0 Use optimizing compiler option for production

version

POTENTIAL LANGUAGE CONVERSION PROBLEMS

0 Programming Language implementation is

compatible with previous system (preferably a

standard language)

0 Word length change does not invalidate results

O System provided subroutines function as before

0 Rounding and truncation do not affect expected

results

0 Logical unit numbers and names match

0 Range of loops unaffected

0 Length of identifier names satisfactory

0 (in PL/I) name of segment and name of

procedure are same

-16-

0 (in PL/I) eliminate "options main"

0 Give segment name the suffix of the processor

to be used

0 Check correct use of quotes (") and

apostrophes (')

-17-

Modes of Usage

Out of Class Assignments

Prior to the development and implementation of the

Interactive Classroom system, the majority of undergraduate

computer usage was centered around the Remote Job Entry

(RJE) stations on campus. Class assignments were then given

to students to execute on the system in the batch

environment. This was accomplished in two steps; firstly

the teacher, in class, and totally divorced from the real

time operation of the system, introduced sufficient skills

in machine operation and (perhaps) programming, to provide a

foundation on which to build the assignments. It was then

up to the student to deliver to the RJE station the

appropriate data in order to solve his out-of-class

assignment. Being a batch environment, any errors in either

the data or the program were reported back to the student

"en masse" and it was his problem to make the corrections

off-line to obtain a valid run. In all of this the

instructor was divorced from the actual opera ti on of the

system, except to answer consulting questions.

This same process can be carried on with the Interactive

Laboratories wherein the instructor can give the necesary

instructions in class, off-line, and leave all the actual

processing to the "spare-time" of the student. However, one

important question needs to be asked before this transf<;:r

-18-

from the batch oriented system to the interactive system is

contemplated:

"What can be accomplished additionally using the
interactive system that could not have been
accomplished in the batch environment?"

For example, if the processing to be accomplished is the

mere tedious repetitive operations over previously prepared

data with no options on either the method of execution or

the selection of some algorithmic process, then there is no

advantage to interactive processing. On the other hand, if

the assignment is to use the prepared data as a data base

for the student to experiment over in order that he might

discover the most appropriate tools for this particular

experiment, then the interactive system may be most

appropriate.

From an administrative piont of view, it is imperitive

that some consideration be given of the cost differential

between batch and interactive usage. In general, batch

processing is based on CPU usage whereas terminal usage is

based (in the main) on connect time. Further, the

availability of a University provided RJE system may not be

offset by department provided terminals.

-19-

Electronic Submission of Assignments

Through the use of the communications devices in the

interactive system, students can be given the opportunity to

deliver their assignments to the instructor electronically.

Provided that the instructor sets up conventions for naming

programs and other documents which will permit him to

differentiate between submissions, then this system will be

highly effective. Since the interactive system records the

date and time of each message which it relays through the

system, the submission of assignments on time can easily be

verified. This also means that the faculty member does not

have to physically collect assignments.

Through the use of "compose" or "script" (depending on

the system used) students in any class can submit themes for

grading. Similarly, where the system permits the user to

automatically record (or "log'') his terminal session, the

student in a laboratory exercise can submit exactly what

happened during his experiment. In the same manner, if the

student has problems and wishes to ask a question through

the mail system, the courses consultant can be provided with

an exact copy of all the actions the student took prior to

getting the problem for which help is needed.

BEWARE however that assignments do not pile up to such an

extent that the storage system is overtaxed. Remember that

a submission is a £2l2Y of a file or segment and uses

additional storage. Delete all files after grading.

-20-

0ut of Class Assignments Checklist

0 Objectives of assignment can be met with the

use of the computer

0 Students have sufficient experience to

complete assignment

0 Assignment statement clearly describes any

necessary system segments to be used

0 Copy of assignment exists as an accessible

file on the system

O Where necessary, limited subset of commands

has either been implemented or expanded

0 Help segments on the assignment have been

prepared and will be updated as necessary

0 Establish a mail box for student enquiries

O Establish a consultant's communication system

0 If electronic submission is to be used, rules

0

regarding program/segment naming have been

established

Grading system

established and

students

for

has

assignments has

been transmitted

been

to the

-21-

In Class Teaching and Experimentation

The use of the interactive classroom is probably the most

difficult to envisage. The proper inter-relation between

the teacher and the system is difficult to attain, the

coordination of teacher and machine being difficult to

control. From prior experience we know that the best use of

the system (from a system point of view) is when the

students are all busy using the terminals. However, the

teacher needs some time to explain what to do, ~ if he

has conducted ~ preparatory period. The natural reaction of

the students, sitting at a terminal, is to play. At this

point the teacher loses the primary battle of "getting their

attention." Thus the actual presentation of new material by

a teacher in this environment is difficult. At its best the

teacher comes off second best as merely a "suggester" of

things to do or a consultant when that which was expected

does not work. One can only conclude then that in this

environment the best teacher is the one that has the

attention - the terminal.

In the early stages of using the interactive system, the

teacher has no option but to attempt to compete with the

system so as to enable the students to gain experience in

using the system. Ideally, this initial experience will be

gained quickly and universally by all students on campus so

that this initial "start-up" will not be necessary in every

class.

-22-

Wi thout initiating a complete Computer Aided Instruction

(CAI) system, which is the subject of the next section,

classroom environments can be developed in which the

learning experiences can be controlled by the teacher but

which are provided by the system. One such scenario might

be to provide a

is spent in the

two class sequence in which the first class

interactive laboratory and in which each

student, or group of students, experiment over a fixed data

base (read-only) with various packages. In the next class

period then they can compare their results outside of the

terminal environment. Conversely, the first class period

may be effectively used to design a set of experiments for

each group to accomplish to achieve similar goals.

The more passive use of the system in a teaching

environment is possible where the faculty member has

prepared a set of notes which are displayed on the screen as

he progresses through the lecture. These serve both as a

guide to his presentation but also provide visual aids to

the students at the appropriate time. In such an system the

keyboards of the terminals are inoperative until released by

the instructor for appropriate input.

The use of the terminal system for

other interactive environments can be

the simulation of

highly beneficial.

Typically such systems are used in the simulation of

business activities through the use of a myriad of business

games where each group makes decisions on a timely basis.

The results of these decisions then influence a global

-23-

env ironment and result in the modification of the status of

each groups "holdings." The development of such systems can

be extended to many other decision making environments

besides business, though the algorithms for such games are

best known in that field.

Considerable success has been achieved by establishing

the class period as a laboratory experience where the

problem has been carefully laid out in advance. For

example, in a programming class

experience for students to read

it is a good learning

programs that are well

constructed. Using this tenet one classroom exercise is to

give the student a good example of a program which is

accessible in a file (or segment) and to make some

extensions to that program. This requires both an

understanding of the language and an ability to understand

the underlying algorithm which the program expresses. Once

a grounding in reading good programs has been established it

is then possible to give the student a poor program ~nd for

him to re-write it, or an incorrect program to debug. With

experience the instructor can construct programs which

contain "progressive" bugsi that is, bugs which only reveal

themselves as each prior one is resolved.

-24-

Sample Classroom Learning Assignment

DEPARTMENT OF COMPUTER SCIENCE CS4052 WINTER 1979

Objective: to write a PASCAL program to investigate the
declaration attributes of arrays.

Using the framework of a PASCAL program which is stored
under the project directory as "pascal frame", write a
program which will declare an array to be two-dimensional
with the first subscript varying from 5 to 15 and the second
from 1 to 10. Fill each element of the array with the value
computed as the sum of its subscripts. Print out the
contents of the array. Use all three versions of the loop
control statements - do while, repeat until and for.

Problems:
If a type had been declared as:

type it= array[l .• 10] of integer;
what would be the effect of the statement

var that: array[5 •. 15] of it; ?
What is the difference between the above pair of

declarations and the following:
var that: array[5 •• 15,l .• 10] of integer; ?

Show by two programs, the differences (or similarities)
between these statements.

Using the same programs as above, investigate the
differences between write and writeln.

What is the maximum size of any output line on your
terminal?

What is the error message which is produced when an
invalid subscript is used (i.e. a subscript out of range)?

What is the significance of the dumped data after an
execution time error?

I want to use an array
integers in one dimension and
I do this? Show by a program

(two dimensional) which has
reals in the other. How would
that you can do this!

-25-

Checkl ist for Classroom Activity Planning

O Objectives of classroom period are established

0 Segments or datasets for students to use have

been prepared and the appropriate access set

0 Progression of activities is logical and match

the subobjectives of the class

O Dummy segments for each stage of the classroom

progress,ion exist for those students who do

not have time or ability to complete prior

activity

0 Submission arrangements have been established

o Classroom instructor has terminal for his

exclusive use and can access it easily from

front of room

o Classroom is scheduled

o Plan B is ready in case system is inoperative

at this time period

-26-

Computer Aided Instruction (CAI)

[3] Multics supports a system for the assistance in

writing interactive programs which was developed by Roy

Kaplow at M. I.T. named TICS ('.!'.eacher-l_nteractive f_omputer

§_ystem) which is aimed at facilitating the authoring of

[general] programs. The system includes particular features

for creating instructional software, and in that application

it is intended for direct use by teachers or other persons

whose expertise lies in the subject matter being addressed,

but not necessarily in computer programming. TICS is

implemented in two components: an author system and a

delivery system. The former provides the tools for writing,

investigating, editing, and trying out programs. The latter

provides a special environment for student use of the

programs. The author can work on his description of a

program through an on-line terminal. He can allow "try out"

access to others who then can use, but not alter, the

program, while it is still being developed and even if it

contains structural errors! An author may work on as many

programs as he chooses and, conversely, it can be arranged

that any number of authors can work on one program.

When a program is finished, the author initiates a

transformation process (analogous to compilation), which is

[3] This review is taken from: Kaplow,R. et
Assistance for Writing Interactive Programs:
ACM Mtg., August 1973, pp 309-315.

al, Computer
TICS, Proc.

-27-

called compression. That process comprises the various

steps of ordering the data base, searching for structural

errors, extracting only those elements which are needed for

the execution-time description of the program, and

formatting them into a highly coded, compressed form. This

is used in the delivery system.

The commands for creating the program itself are probably

the simplest part of the language; the following sequence is

intended simply to give its flavor and is shown without the

shorthand conventions that comprise the true [actual]

language.

set the working node "name_l"

ask "What is the date of Washington's Birthday?"

if response = "february 22"
then print "That's right!"

and go to node "name 2".

if response = "february 19"
and response (in node 17) = "old enough"

then do flag = 1 + flag
and pr int "Yes, in America they will even change

a President's birthday to make it
a long weekend."

and go to node "name 3".

if response = "february 12"
and variable > 2.3

then call subroutine name(flag, variable)
and hint "That•i some other President's

name. Please try again.".

As a computer aided instruction system, TICS can provide

a learning environment which the author can vary according

to the needs of the students, can provide automatic grading

and response, and will permit the student to progress at any

-28-

ra te or a rate determined by the author.

Much of the power of TICS is left for the teacher to

invoke and to use ingeniously. A limited set of pre­

programmed packages are available and it is anticipated that

cooperation between faculty with similar problems but

differing environments can lead to some universally useful

systems.

Common or Garden Uses

The everyday usage of the interactive classrooms by

students who may not necessarily be registered for a course

which encompasses computer usage is now possible. This may

involve such simple activities as the use of the system as a

large calculator for those who don't have a pocket

calculator, or the preparation of themes for a writing

assignment providing thereby simple editing facilities as

are provided in many business offices today.

One of these typical uses is the editing facilities of

the computer and the ability to format the output in various

ways. Included in such formatting systems can be the

specialized requirements for (say) theses. Text editing

systems are becoming more and more common in not only

newspaper offices but also as aids for secretaries and

writers. The two systems, script (for IBM systems) and

compose (for Multics), use similar formatting specifications

(such as for centering titles, indenting sections, paragraph

indents,

students

etc.) and thus

to learn the two

specification and execution.

-29-

are a

stage

good starting point for

process of programming:

Other Uses Checklist

0 As a calculator

o As a Text Editor

0 As a Text Formatter

-30-

The Systematic Design of Instruction

Effective instruction requires careful planning. While

this is true of instruction in any setting, even more

thorough planning is required when interactive computing is

a part of the instructional strategy. Computers, when used

appropriately, are capable of delivering subtle, yet complex

instruction teaching in a manner that no human instructor

could, even in a one-on-one situation with a student. '!'he

computer has infinite patience, and is not likely to be

irritated by repetitive responses. However, unlike the

human teacher who can modify behavior to better respond to

the student, the computer can only respond to anticipated

student actions and the student's ability to correctly

operate the interactive terminal.

There are (at least) three ways in which instruction

which is to be delivered via interactive computing can fail:

A. The instruction can be addressed to
inappropriate objectives, that is, its
potential can be squandered toward
instructional ends that could be more
effectively met by some other method.

B. The instruction can be poorly organized or be
otherwise confusing puzzling and then
frustrating the student with its inability to
provide further clarification.

C. Students can be so poorly informed about the
terminal's essential operating procedures or
the logistics of integrating computerized
instruction into the course that they cannot
access the instruction properly in the first
place.

The best safeguard against all three of these problems is

-31-

the systematic design of instruction. Below is a simple

diagram depicting the process and indicating how the various

stages of the design procedure relate to the three problems

described above.

....,

specify I
terminal PROBLEM A

---> learning ---->---
outcomes I

I
I

select an I
--> instructional ->-I

strategy I
I
I

conduct I
--> task ---->--1

analysis I
I

I I
I develop I
1--> prototype ---->--1 PROBLEM B
I instruction I
I I
I I
I I
I formative I
1--> evaluation -->--1
I I
I I
I I
I implement I
1--> instruction -->--I PROBLEM c
I I
I I
I I
I evaluate I
-<-- and <------

revise

-32-

Specify terminal learning outcomes

It is important to note the first step in the design

procedure, that is specifying the terminal learning

outcomes. Knowing what it is that you want students to be

able to do as a result of instruction precedes deciding how

you are going to teach them to do it -- which is step 2.

Interactive computing is one alternative amongst many in the

set of instructional strategies. In general, quality

instruction is in jeopardy when the instructional strategy

-- in this case interactive computing -- is selected before

one has a very clear statement of the desired results of

instruction. Failing to have this information before

selecting a strategy is very much like adopting a solution

before identifying the problem. Poorly delivered

computerized instruction often results from an instructor's

using the medium in spite of intended learning outcomes that

suggest another strategy.

Therefore, the suggestion here is to be disciplined about

writing instructional objectives for your course. There

have been many books written about how to write

instructional objectives; some of these are quite helpful

and are referenced at the end of this manual. Regardless of

whose rules you might use, there are two recommendations

upon which virtually everyone agrees.

1. Write down your intended learning objectives
(outcomes). You are probably deluding
yourself if you think that you "have them well
enough in mind". Having course outcomes in
writing will make later creation of the
instruction and evaluation of the lesson much

-33-

easier.

2. Write your intended learning outcomes in terms
of the students' behavior. If you write
outcomes in terms of what you or the computer
is going to do, you remove your attention from
the only point at which effectiveness can be
determined -- that is, the students' behavior.

The objectives related to any segment of an instructional

program can be developed by completing the following

outline:

The purpose of this segment is to:

As a result of this segment, the student will be able to:

Select ~ instructional strategy

After you have determined the major intended learning

outcomes of your course, you are in a position to decide

whether interactive computing is an appropriate

instructional device. What kinds of objectives lend

themselves to instruction by interactive computation?

For a moment, think of computerized instruction as a

stimulus-response-feedback process. The system provides a

stimulus to which the student responds. The system then

provides the student with feedback regarding the

appropriateness of the response or the effect of that

response upon other data or variables. Those objectives

-34-

best suited to computer aided instruction are those whose

attainment requires one or both of the following elements:

1. Very frequent stimulus-response-feedback cycles

The objectives which require these cycles tend to be

the development of lower level cognitive skills such as

remembering or applying rules upon which the system

can provide drill and practice. A student practicing

at a terminal is provided with many more opportunities

to respond than is a student in the typical classroom

situation where responses are requested actively only

once or twice per class period. Examples of these

lower level objectives are:

Given an English word, student will be able to spell
correctly its Spanish equivalent.

Given a bank of
compute the mean,
of that data.

data,
mode,

the student will be able to
median and standard deviation

~· Very complex, individualized feedback.

The objectives which require this feedback tend to

be the development of higher order cognitive processes

such as complex application of a number of principles

or analysis of a problem involving several variables.

Instructional simulation is a good example of the

application of computers toward these higher level

objectives. This strategy uses the computer's unique

capacity for complex calculation to simulate real world

relationships among variables. Working with an

instructional simulation allows the student to

-35-

manipulate a microsm, viewing directly the effects of

one or a number of factors upon other variables. The

simulated relationships may be so complicated that a

human teacher would not be able to compute them without

the assistance of a computer let alone compute them

repeatedly for each student as he manipulates the

variables in an attempt to discover the principles that

link them together. Examples of higher order

objectives that suggest the use of computer aided

instruction are:

Given a simulation which depicts the effects of costs,
profits, investment, marketing techniques, public
relations, and general economic conditions upon the
maintenance of a successful business, the student will
develop a corporate budget that maximizes the profits
wihtout allowing the corporate image to drop below some
quantified minimal level.

Given a simulation of a physical
is to investigate the effects
variables, in much the same way
system in a physical laboratory.

Conduct task analysis

process, the student
of altering certain
as he would probe a

Once you have specified the major learning outcomes in

terms of the expected student behaviors, you can proceed to

break these objectives down into their component sub-

objectives -- known by the systems designers as the process

of successive refinement. This analysis will assist you in

creating the instruction. A good way to do this is to ask

yourself "What would a student have to know in order to meet

this major objective?" The answer to this question should

-36-

resul t in one or more additional objectives that are

subordinate to the first. Each of these sub-objectives can

be submitted to the same question and further be broken down

until you reach the knowledge level that your students

possess upon entering the course.

For example, if it is the purpose of the course to

demonstrate the techniques of automatic type setting and

pagination, with the development of skills related to the

layout of the "printed word", it will first be necessary for

the students to have the necessary skills in English

composition regarding the use of such things as footnotes,

paragraph indentation, etc. before it is meaningful for them

to understand the techniques of typography. If a computer

is to be used in this demonstration, then the pre-skills

must also include knowledge of how to access the system and

some basic knowledge of the storage system. The insertion

of type-setting instructions into a manuscript also then

requires the user to understand the difference between the

data to be type-set and the coded instructions which are to

be obeyed by the type-setting system.

This type of task analysis is particularly important when

planning computer

guard against the

assisted instruction. It

error described

is your best

on page 30

Because the student will be interacting with a machine

instead of a person, gaps in knowledge must be anticipated

and appropriate support built into the instruction.

Otherwise, the student will reach an impasse in progressing

-37-

through the lesson. When the task analysis is complete, you

should have a comprehensive list of everything every

student behavior that the instruction must teach.

Furthermore, a hierarchical task analysis such as the one

described above will generally suggest the order in which

the knowledge components -- concepts, principles, specific

applications of principles, etc. -- should be presented to

the students.

Develop prototype instruction

At this point you are ready to write a tentative

instructional program.

Formative Evaluation

When you have completed a prototype of the instruction,

formative evaluation is appropriate. Evaluation at this

stage of instructional design is called "formative" because

the results are used to refine the instruction before it is

implemented in class. Formative Evaluation requires that

you observe closely a small number (say 2 or 3) appropriate

students as they work through the instruction. The working

environment should simulate the expected "real world"

instructional setting as closely as possible. The students

must be actively encouraged to verbalize their thinking as

they work so that you can note carefully the source of any

misunderstandings that develop.

To yield accurate information for improving instruction,

formative evaluation must have the following

characteristics:

-38-

1. The evaluation must be tied closely to the
complete set of objectives generated by the
task analysis, the subordinate objectives as
well as the terminal ones. Attainment of each
of these objectives must be assessed if the
instruction is to be revised with any
precision.

2. The evaluation must involve students who are
representative of the population of students
who will be using the finished lesson. Never
use a graduate student or a colleague as a
trial student for formative evaluation; no one
should be in that role who might be able to
correct deficiencies in the instruction by
drawing unknowingly upon advanced knowledge of
the subject matter.

After the formal evaluation data has been collected, the

instruction should be revised to remove any errors and to

add any clar if ica ti on suggested by the eval ua ti on results.

Be prepared for extensive revision. Several formative

evaluation-revision cycles may be necessary before the

instruction is ready for a final validation and

implementation.

You should recognize that formative evaluation is yet

another means of addressing problem B above; it is an

excellent empirical means of determining the confusing

points in an instructional sequence. Furthermore, when

conducted with truly representative students, formative

evaluation can give you valuable insight into how well the

instruction works mechanically, that is, problem c.

Formative evaluation is essential to the development of

sound computer assisted instruction because it is impossible

for the unaided author to anticipate all the ways in which

the instruction can be subverted, distorted, misunderstood,

-39-

or just plain "not found" by students.

Implement instruction

After the instruction has been revised to correct every

problem detected during

instruction is ready for

setting.

Evaluate and Revise

formative evaluation, the

implementation in its intended

Evaluation of its effectiveness under the constraints of

academic reality is, of course, very important. Even this

evaluation is somewhat formative in nature since one should

be prepared to revise the instruction based on its results.

Therefore, the evaluation must assess all the learning

objectives. However, in contrast to the evaluation

discussed previously, this evaluation data will be based on

the performance of many more students and under relatively

independent circumstances.

The recognition of the need to be ready to revise an

instructional segment should lead the instructor to

recognize the need for documentation of the steps and

decisions made in developing the original version of the

segment. It is very d iff icul t to revise anything if you

don't know why you did it that way in the first place! It

is better to have a separately written description of the

system than to attempt to reconstruct it each time you

recognize the need for revisions.

Because you will not be observing each student during the

use of the instruction, unlike during formative evaluation,

-40-

the means of data collection must be carefully planned.

Fortunately the computer has several features which are

particularly useful for this purpose. For example, it is

possible to observe the "droppings" of a student in a much

more er i tic al manner than in other classroom situations.

The instructor can be given the opportunity to "rummage"

through the files the student creates and to observe the

rough work which undertaken in order to achieve the

objectives of the learning activity. By this means the

instructor can examine partial results, incomplete

assignments and intermediate experiments as well as simply

-41-

receiving the final copy of the assignment material.

0

0

0

0

Checklist for Systematic Design of Instruction

Terminal learning outcomes stated

student behavior.

Task analysis (specification

objectives) completed.

Prototype of instruction "tried

small number of

evaluation).

Instruction revised

formative evaluation.

students

based on

in terms of

of sub-

out" with a

(formative

results of

0 Instruction implemented.

0 Effectiveness

evaluated.

of implemented instruction

0 Instruction revised based upon the students'

ability to perform the previously specified

learning outcomes.

-42-

Evaluation Techniques and Tools

The TICS system has built into it various facilities to

enable the author to record several types of data regarding

a student's use of the system. These include the verbatim

recording of student responses as well as scores on tests,

the number of incorrect responses before a correct response

is selected, and other pertinent data. The majority of

these data items are directly under the control of the

author and are not "automatic".

The use of the mail system in Multics permits the student

to send both messages and assignments to the teacher and

gives the student the ability to correct input (but with the

modification of the date sent to the date of the latest

update) and protection against misuse by unauthorized users.

However, this system is limited to the mailing of segments

which do not exceed four thousand words (one length).

Provided each student establishes a mailbox during the

initial access to be workspace, facilities are available to

broadcast course-wide messages for each student to receive.

By this means, updates on assignments, notices of class

meetings etc. can be issued to all registered members of a

class.

Each month the computing center issues a usage report

which provides the faculty member with information on system

usage which can be used as a management-by-exception tool.

A similar report can be obtained on a daily basis under

-43-

Mul tics by Project Adminstrators.

In general, the recording of data on student activities

under a project is the responsibility of the author or

faculty member and must be "programmed" just as other

aspects of computer assisted instruction.

System features available to assist in evaluation

O (Multics) Project Usage Reports

0 (TICS) Records of responses -- verbatim

o (TICS) Cumulative scores on multiple choice tests

O (TICS) Selected data chosen by the author

o (Multics) Verbatim records of terminal sessions

-44-

Resource Scheduling and Allocation

Faculty Qualifications

To utilize the system and to administer a Multics

account, a faculty member must be familiar with the system

and have takem the Project Adminstrator's course.

Room Scheduling

The room scheduling is handled by the registrars office.

A faculty member turns in their request to the registrar.

Resource Allocation (Pie Slicing)

The Multics system is set up in a pie slicing algorithm.

During the day the classrooms get 75% ofthe available

resources.

-45-

Computing Center Courses Available

Introduction to Multics:

This course is an introductory level course for

Multics. The basic information for getting started

with Multics is provided.

Project Administration:

This course provides faculty and graduate students

information concerning the administration of a project.

The Project Administrator can control what project

members can do on the system and how much disk space

they are allowed.

Other courses are available on CMS and other aspects

of the IBM systems.

-46-

Instructional Development Facilities

The Learning

comprehensive media

Resources Center

resource service to

provides a

support the

University's instructional, research, and extension

programs. The goals of the center are to develop the

necessary resources, both human and technological, to

meet the demands for improved communication and

expanded learning opportunities, to encourage

systematic analysis and design of instructional formats

to enhance student learning, and to respond to

perceived faculty needs for audio-visual media support.

As a primary mission, the staff of the center

analyzes instructional needs and provides planning,

production, and warehousing of resources to facilitate

communication and improve the quality of instruction.

These tasks are accomplished through the three

divisions of the

media services,

center: instructional

and educational systems.

development,

While each

division provides services of a specific nature,

cooperative and coordinated efforts by the staff

fulfill faculty and student needs.

During the past several years there has been a

noticeable increase in the awareness of media by the

faculty. It is apparent that a wide knowledge of the

center exists; over 50 percent of the faculty use

services from the center at some time.

-47-

A personal goal of each member of the center's staff

is to provide the best quality service possible in

fulfilling the University's media requirements.

Suggestions from faculty for the kinds of services

needed and the quality of those services have been

invaluable over the years.

In a broad sense, the Instructional Development

Division (IDD) of the Learning Resources Center deals

primarily in HUMAN resources. IDD is the division

responsible for working directly with faculty members

who are creating or revising course materials. IDD

helps faculty members implement new approaches to

instruction and aids faculty in assessing the

effectiveness of either instructional materials or the

instructional process.

Media Services provides a

instructional support services.

wide variety of

These include the

purchase, rental and local production of instructional

materials, and the provision of projection and audio

equipment needed to use these materials.

The Educational Systems Division supports the

university with television production and distribution

facilities. Programs are produced in studio and on

location. Staff producers/directors assist faculty in

adapting

programs.

objectives

ideas and wishes into usable television

A variety of approaches to instructional

are possible, and experiementation in

-48-

program format is encouraged. Program distribution can

be through the closed-circuit cable TV system which

serves 180 classrooms, or through departmental self­

study facilities.

-49-

The Virginia Tech Computing Center has an IBM 3032,

IBM System/370 model 158 central processing unit (CPU)

and a Honeywell 68/60.

The IBM 3032 runs the OS/VS2 MVS (Multiple Virtual

Storage) operating system with JES2 (Job Entry

Subsystem 2) as job scheduler. Information Management

System (IMS) runs on this CPU.

The IBM 370 runs under the control of Virtual

Machine Facility/370 (VM/370). Under VM,

Conversational Monitor System (CMS) with APL,

Speakeasy, and several major language processors

provides interactive support.

The QUICKE processor runs under the control of MVS

and JES2 providing service for several high-level

languages, a dialect of 370 assembler language, and

almost any one-step processor. The QUICKE facility is

designed to handle a large volume of small jobs with

short run times (fifteen seconds or less) and is

available to local users at terminals in 130-A Burruss

and to users at all remote workstations. For more

information on the use of QUICKE,

Services, extension 6154.

contact User

MVS batch services are available to remote users via

-50-

card-reader/pr inter terminals and via computers that

function as JES2 workstations.

Terminals are located at colleges throughout the

state. Hardware support exists for dial-up BSC IBM

2780/1130/S360 MOD 20 compatible terminals and for

dial-up ASR 33/35 (ASC II) compatible terminals.

The Honeywell 68/60 provides interactive computing

under Multics (Mult iplexed I nteractive C omputing

.§. ervice) • Multics' primary purpose is to support

undergraduate instruction.

Time sharing services are available in three forms:

* VM/CMS is a time sharing system that

allows interactive programming. The software

available under CMS includes VS APL, Speakeasy, major

language processors, and a text-formatting program

called SCRIPT.

* Honeywell Multics is an interactive system which

provides inter active programming and debugging with

major languages, such as FORTRAN and PL/I.

* IMS (Information Management System) is a control

system, used in administrative applications only,

-51-

designed to implement medium to large data bases in a

multi-application environment. This environment is

created to accommodate both online message processing

and conventional batch processing, either separately

or concurrently.

Hardware Configuration at the Computing Center

The current configuration of the Computing Center is

given in the following chart, effective July 1, 1979.

CURRENT VIRGINIA TECH COMPUTING HARDWARE

UNIT DESCRIPTION NUMBER

IBM

3032 IBM System 3032 (6.0 megabytes) 1

3158 IBM System 370 Model 158 (4.0 megabytes) 1

3830 Disk Controller 1

3350 Dual Spindle Disk Drive (800 megabytes) 14*

3330 Dual Spindle Disk Drive (400 megabytes) 2*

3803 Tape Controller Drive 1

3420 Tape Drive (800/1600) 5

2914 I/O Switching Unit 1

3540 Flexible Disk Reader 1

2821

3505

3525

2501

3272

3284

3705

1200

1051

1403-Nl

3211

3811

Honeywell

8868

451

190

1200

500

6624

Other

1380

9000

-52-

Controller

Card Reader

Card Punch

Card Reader

Display Controller

Printers

Communications Processor

Versatec Electo-Static Plotter

Calcomp Plotter (11" and 30")

Line Printer (1000 LPM)

Printer (2000 LPM)

Printer Control Unit

1

1

1

1

4

4

1

1

1

1

2

2

Honeywell Multics Processor (1.0 megawords) 1

Disk Drive (200 megabytes) 2

Disk Drive (100 megabytes) 8

Printer (with upper/lower case) 1

Tape Drive (800/1600) 2

Datanet Communications Processor 1

Memorex Communications Processor

Develcon Dataswitch

1

1

-53-

* Each dual spindle disk drive accomodates two disk packs.

Remote Processing Hardware

A number of remote terminals belong to certain academic

and administrative departments which use the Computing

Center's VM/CMS and IMS systems. Access to IMS data bases

is available through IBM 3277 or equivalent video display

terminals or with 3284 remote printers. The remote

equipment using VM/CMS includes video, graphics, and

hardcopy terminals using EBCDIC or ASCII codes.

The College of Education in University City Office

Building operates a Data 100 RJE terminal. The College of

Agriculture in Hutcheson Hall, the College of Arts and

Sciences in McBryde Hall and in Robeson Hall, the College of

Engineering in Randolph Hall, and the Learning Resources

Center in Derring Hall, operate HP 2108 stations consisting

of a minicomputer, a card reader, and line printer(s). The

Computing Center is responsible for the operation of

equipment at the locations mentioned. In Whittemore Hall,

the College of Engineering maintains and operates a station

with similar capability.

A remote job entry station provides a user with a nearby

terminal for submitting jobs into the main system and

-54-

obtaining printouts at the RJE station, thereby avoiding a

trip to the Computing Center in Burruss Hall. The remote

stations are open to all Virginia Tech computer users. The

schedule for remote stations is posted at the remote

stations and in the Consulting Room in Burruss.

Minicomputers

There are over three dozen minicomputers on the Virginia

Tech campus. The vendors include Digital Equipment

Corporation (DEC), Hewlett Packard, General Electric,

Raytheon, and Packard Bell. The uses for minicomputers are

quite varied and include programming or instruction in

programming, communications to remote lab equipment,

graphics for design and study, lab control, and ground wind

measurement. In the College of Engineering Computer

Laboratory there is also one EAI-580 analog computer used in

a hybrid configuration with a digital minicomputer. The

Computer Science Department has a Hewlett-Packard 2100

minicomputer to be used for training in time sharing,

systems architecture, and operating systems.

-55-

Interactive Labs

Two classrooms have been set aside as interactive labs

available for undergraduate instruction.

120 Robeson is a graphics lab with:

* 5 Hewlett-Packard 2648s

* 5 Tektronic 4013s

* 2 Hughes C9s

* 1 Versatec 1640 Printer/Plotter

* 1 Numonics Digitizer

116 McBryde is a non-graphics lab with:

* 20 Hewlett Packard 2641 terminals.

-56-

Available Publications

Honeywell Information Systems Publications

Order No.

AG90

AG91

AG92

AG93

AG94

AK95

AL40

AM82

AM83

AS43

AS44

AT58

AW32

AZ98

CC70

Manual Title

MPM Introduction

MPM Reference Guide

MPM Commands and Active Functions

MPM Subroutines

Multics PL/I Language Specifications

APL Users' Guide

Multics Introductory Users' Guide

BASIC

Multics PL/I Reference Manual

Multics COBOL Users' Guide

Multics COBOL Reference Manual

Multics FORTRAN

Multics SORT/MERGE

WORDPRO Reference Guide

Multics FORTRAN Users' Guide

-57-

Virginia Tech Computing Center Publications

Five kinds of publications are available to

Computing Center users: user's guides; miniguides;

Fastline, a weekly two-page newsletter available to all

users of the computer; Feedback, which contains

information from previous Fastlines that has not yet

been incorporated into the appropriate user's guide or

miniguide; and the Log, a free monthly newsletter

available to users and other interested persons.

Under CMS,

documentation

the

for CP

Help

and

System provides online

CMS commands, for EDIT

subcommands and EDIT macros, and for commands and EDIT

macros implemented at Virginia Tech. Under CMS, type:

help help

to find out how to use the Help System.

User's Guides

The Computing Center provides user's guides to aid in the

use of programs and facilities available at the center.

-58-

Ti tle of User's Guide Index Number

Assembler G 3

CMS 5

Versatec and CALCOMP Graphics 6

Handbook for SCRIPT Users 12

Introduction to CMS and the CMS Editor 8

Introduction to the Computing Center 1

Introduction to SCRIPT 9

OS/VS2 JCL and JES2 Statements 2

PDP-11/360 Simulator 13

PL/C 20

Postal Address Labels System (PALS) 19

University of Waterloo SCRIPT Reference Guide 10

Sub-account System 15

SYSPUB User's Guide 11

WATBOL 17

WATFIV 4

Miniguides

In most cases, each miniguide provides information about

one program product, utility package, or Computing Center

service. In a few cases, descriptions of more than one

program are combined into one miniguide.

-59-

Title of Miniguide

Facilities:

Computer Systems at Virginia Tech

Software at Virginia Tech

FORTRAN:

Index Number

2

43

Common FORTRAN Execution Error Messages and Codes 42

FORTRAN Debugging Facilities 37

FORTRAN Execution Time Errors 38

FORTRAN JCL 39

FORTRAN Subroutines CORE and REREAD 55

FORTRAN Subroutines CORSRT, MOVCHR, and MCCV 34

FORTRAN Subroutines DATE, STIME, TIMEON, and TIMECK 31

FORTRAN Subroutines SIGN, GET, and SETFIL

The Harwell Subroutine Library

32

68

Analysis/Maintenance/Conversion of FORTRAN Programs 27

International Mathematics and Statistics

Library (IMSL)

SSP {FORTRAN Scientific Subroutine Package)

Miscellaneous:

ASSIST

Computing Center Services

Computing Center Short Course Descriptions

Computing Center Price List

Computing Center Publications

Data Description on External Media

Determining Region Requirements

71

23

54

76

64

48

1

40

41

-60-

Title of Miniguide

GPCP (General Purpose Contouring Program)

JES2 Commands for Remote Stations

Keypunch

KWIC Indexing System

MULTASM, FORTRASM, PLIXASM, PLIXASMG

PDSCMP (PDS Compile)

PLOT ALL

Index Number

45

57

44

74

35

49

72

Plotters at the Virginia Tech Computing Center 75

Printer Plots--ABPLOT and SIMPLT 33

QUICKE 50

Sub-account Creation and Maintenance 47

SURFACE II 73

Program Packages:

BMD (Biomedical Computer Programs) 7

CHESS (Chemical Engineering Simulation System) 10

CSMP (Continuous System Modeling Program) 13

DYNAMO II (Continuous System Simulation) 14

FORMAC (PL/I FORMAC Interpreter) 15

GASP IV (General Application Simulation Program) 8

GERT, P-GERT, GERTE, and Q-GERT 66

GPSS V (General Purpose Simulation System,

Version V) 9

ICES (Integrated Civil Engineering System) 12

JCL for Miscellaneous Compilers and Packages 56

LABELS, LABELSl, and MLP (Multiple Labels Program) 30

-61-

Title of Miniguide

MARK IV (File Management System)

MATLAN (Matrix Language System)

MPS (Mathematical Programming System)

Index Number

58

16

17

OMNITAB (Statistical and Mathematical Package) 18

PCAP (Princeton Circuit Analysis Program) 19

POLYREG (Polynomial Regression Program) 20

SAS (Statistical Analysis System) 21

SIMSCRIPT II.5 (Discrete Event Simulation) 11

SPSS (Statistical Package for the Social Sciences) 22

STIL (Statistical Package) 24

CMS Packages and Language Processors:

APL (A Programming Language) 52

BASIC 53

The CMS Batch Monitor 69

The CMS SORTF Command 70

COBOL under CMS 62

FORTRAN under CMS 60

Hints for Efficient VM/CMS Use 67

Intel 8080 Micro-processor 65

PL/I under CMS 61

RlBASIC 77

Speakeasy 36

SPITBOL under CMS and MVS 63

WATFIV under CMS 59

Utility Programs:

-62-

Title of Miniguide

IEBCOPY (IBM Utility Program)

IEBGENER (IBM Utility Program)

IEBPTPCH (IBM Utility Program)

IEFBR14 Program and WIPEOUT

Index Number

3

4

5

51

PRPU, PRPUSEQ, and CONVERT (Card Deck Maintenance) 29

SyncSort 6

THESIS (Prints Input Data, Spaced for Thesis

Binding) 28

TPPRINT (Tape and Sequential Disk File Printing

Program)

VPILIST, LISTPDS, VPIPDS, and VPIPROGM

26

25

Fastline

Fastline is the weekly newsletter of the Virginia Tech

Computing Center. It contains current user information.

Copies are available in the Computing Center Library (132

Burruss), at the main computer room window, in 124 McBryde,

in 102-B Hutcheson, in 2103 Derring,

in 100-J Randolph. Fastline can

in 143 Whittemore, and

be printed at remote

-63-

loca tions, with QUICKE, or on a CMS terminal.

Feedback

Feedback cons is ts of r epr in ts of articles published in

Fastline which contain information that will eventually be

incorporated into a miniguide or user's guide. Once the

information has been added to a miniguide or user's guide,

the corresponding article in Feedback will be deleted.

Information from Fastline published on Thursday will usually

be added to Feedback by 12 noon on the following Monday.

Feedback will be useful primarily to the user who misses

seeing several issues of Fastline. Feedback may also be

useful to someone who prints a group of user's guides or

miniguides. By printing a copy of Feedback at the same

time, the user has copies of updates to be made to the

user's guides all in one place, instead of scattered through

back issues of Fastline.

The Log

The Computing Center publishes a monthly newsletter, the

Log, to inform users and other interested persons of

-64-

computing developments at Virginia Tech. To subscribe to

this free newsletter, send your name and address to:

Virginia Tech Computing Center

Editor, Computing Center LOG

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

Other References

[On Interactive Computing]

Bork, A., and Marasco, J., "Modes of Computer Usage in
Science", THE Journal, Vol. 4, No. 2, Feb. 1977.

Bork, A., "Interactive Learning: Millikan Lecture, American
Association of Physics Teachers", Arn. J. Phys. 47(1),
Jan 1979, pp. 5-10.

Haynes,J., A Tale of Two Computers, COMPUTER, IEEE Computer
Society, New York, May 1977.

Kennedy,T.C.S., The Design of Interactive Procedures for
Man-Machine Communication, International Journal of Man­
Machine Studies, VS, 1974, pp. 304-334.

we inberg, G., The Psychology of Cornpu ter P rogr arnrning, Van
Nostrand Reinhold Co., New York, 1971.

Lee,J.A.N., "So! You want to use Multics", Dept. of Computer
Science, Virginia Tech, March 1979.

[On Instructional Objectives]

Bloom, B.S., Taxonomy of Educational Objectives = Handbook
1_: Cognitive Domain, David McKay Co., Inc., New York,
1956.

Davies, I.K., Objectives in Curriculum Design, McGraw-Hill,
New York, 1976.

Gronlund, N.E., Stating Behavioral Objectives for Classroom
Instruction, MacMillan, London, 1970.

-65-

Mager, R.F., Preparing Instructional Objectives, Fearon,
Belmont CA, 1962.

[On Systematic Design]

Davies, I.K., Competency Based Learning: Technology,
Management and Design, McGraw-Hill, New York, 1973.

Davis, R.H., Alexander, L.T., and Yelon, S.L., Learning
System Design: An Approach to ~ Improvement of
Instruction, McGraw-Hill, New York, 1974.

	CS79004-R.pdf
	20050923131747250.pdf

