
Compatible Time-Sharing System (1961-1973)

Fiftieth Anniversary
Commemorative Overview



The Compatible Time Sharing System (1961–1973)

Fiftieth Anniversary
Commemorative Overview



The design of the cover, half-title page (reverse side of this page), and main title
page mimics the design of the 1963 book The Compatible Time-Sharing System:
A Programmer’s Guide from the MIT Press.



The Compatible Time Sharing System (1961–1973)

Fiftieth Anniversary
Commemorative Overview

Edited by
David Walden and Tom Van Vleck

With contributions by
Fernando Corbató
Marjorie Daggett

Robert Daley
Peter Denning

David Alan Grier
Richard Mills
Roger Roach
Allan Scherr



Copyright © 2011 David Walden and Tom Van Vleck
All rights reserved.

Single copies may be printed for personal use. Write to us at ctss@multicians.org
for a PDF suitable for two-sided printing of multiple copies for non-profit academic or
scholarly use.

IEEE Computer Society
2001 L Street N.W., Suite 700
Washington, DC 20036-4928
USA

First print edition June 2011 (web revision 05)
The web edition at http://www.computer.org/portal/web/cshc is being updated
from the print edition to correct mistakes and add new information. The change history
is on page 50.



To Fernando Corbató
and his MIT collaborators

in creating CTSS



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . ix

MIT nomenclature and abbreviations . . . . . . . . . . . . . . . x

1 Early history of CTSS . . . . . . . . . . . . . . . . . . . . . . . 1

2 The IBM 7094 and CTSS at MIT . . . . . . . . . . . . . . . . . . 5

3 Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Memories and views of CTSS . . . . . . . . . . . . . . . . . . . 21

Fernando Corbató . . . . . . . . . . . . . . . . . . . . . . . 21

Marjorie Daggett . . . . . . . . . . . . . . . . . . . . . . . . 22

Robert Daley . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Richard Mills . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Tom Van Vleck . . . . . . . . . . . . . . . . . . . . . . . . . 31

Roger Roach . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Allan Scherr . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Peter Denning . . . . . . . . . . . . . . . . . . . . . . . . . 37

David Alan Grier . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Also from the MIT/Cambridge environment . . . . . . . . . . . . 41

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



Preface

Time-sharing was in the air in 1961. John McCarthy had been thinking about it since 1955
and in 1959 wrote a memo proposing a time-sharing system for the IBM 709 computer at
MIT. Fernando Corbató and two of his MIT Computer Center staff members, Robert Daley
and Marjorie Merwin, starting working on the design of the Compatible Time Sharing
System (CTSS) in the spring of 1961. The system was first demonstrated in November of
1961. (By 1963 CTSS was stable, large scale, operational system — proof positive of the
feasibility of time sharing.) Thus, 2011 is the Fiftieth Anniversary of the birth of CTSS, a
manifestly appropriate time to review the history of CTSS.

In the rest of this commemorative brochure, we sketch the history of CTSS, include
retrospective memories from several of the key CTSS personnel and others, discuss
the uses of CTSS and the impact it had on the computing world, and provide a fairly
comprehensive bibliography.

CTSS has been frequently mentioned in the archival literature of computing. In
particular, volume 14, number 1 (1992), of the IEEE Annals of the History of Computing
was largely dedicated to a discussion of the CTSS system.1 In October 1988 prior Annals
editors John A. N. Lee and Robert Rosin attended a 25th Anniversary celebration of MIT’s
Project MAC (the 27th anniversary of CTSS). At that time they held a group interview with
several people who had been close to CTSS including Professor Corbató. That interview
session and other materials on CTSS became the content of the 1992 issue of the Annals
(the 31st anniversary of CTSS).

That prior effort was by personnel of the IEEE Computer Society was primarily about
capturing the history of CTSS. Now we of the Society History Committee are able to give
a proper celebratory salute to CTSS at the time of the 50th anniversary of its birth.

Note: Because we are using print-on-demand technology and on-line posting to
disseminate this brochure, we can do an update if we learn more about CTSS.

Acknowledgments
Fernando Corbató was the primary motivating force for CTSS. He started the 1961 work
on the system with Marjorie Daggett and Robert Daley. We are fortunate to have been
able to talk to the three of them as we prepared this commemorative brochure in 2011.

Tom Van Vleck has been my most active supporter in the development and produc-
tion of this brochure. He allowed his 7094-and-CTSS web page to be adapted and included
as Section 2 of this document. He provided pointers to numerous sources of information
about CTSS. He suggested who I should talk to, including making an introduction to
Roger Roach. He provided photographs. He reviewed every page as this document was
drafted and provided corrections, additions, and other insight and guidance. Thank you,
Tom, for serving with me as editor of this commemorative brochure. Creating it would
have been impossible without you.

We solicited comments about CTSS from other people who were involved with the
system or had views of it. Their names are noted with their contributions in Section 4
(page 21 — they are also listed in the table of contents). Thank you, all.

1 MIT92a.



x Preface

In late 2010, David Alan Grier of the IEEE Computer Society brought to my atten-
tion that 2011 would be the fiftieth anniversary of CTSS, and he encouraged me to do
something about this anniversary. Thank you, David.

Matthias Bärwolff spotted several typos in a draft of this document. Wally Weiner
gave me a photo of the CTSS manual cover which I mimicked. Steve Peter talked to me
about the typefont used on the cover of the CTSS manual. Roger Roach provided me
with a copy of a DVD with scans of lots of original CTSS documentation. Paul Pierce
enabled me to take a photo of the 7094 console in his computer collection. IBM Corporate
Archivist Paul Lasewicz provided an image of a 7094 system. Karl Berry reviewed the
accuracy of the colophon. The hard copy version was printed by Martin and Lily Sudarma
of Copyman of Portland, OR. Luke Walden provided tips relating to images taken from
an old video.

Hard copies of this brochure will be given to everyone who contributed to it as a
token of appreciation. I hope that Tom Van Vleck and Roger Roach will accept my offer
to post on-line copies of the brochure with their various web-based CTSS repositories
and descriptions.

Most particularly, we are grateful to everyone who worked on CTSS over the years,
helping to make it available and the fundamental influence on the post-1961 future of
computing that it was. Hence the words on the dedication page.

MIT nomenclature and abbreviations
The MIT community typically refers to MIT buildings by their numbers, not names, for
instance, Building 26, Building 39, and Building 20. Building 26 was the original location
of the Computation Center and CTSS system. The Computation Center later moved to
Building 39. Building 26 was next to the famous Building 20 (now gone) which housed
MIT’s Research Laboratory of Electronics (RLE) and other entities.

Perhaps curiously, the building housing Project MAC, 545 Technology Square in a
complex of buildings known collectively as Technology Square, was typically not referred
by number; rather one would say just say something like “I’m going over to Tech Square,”
meaning 545 Tech Square.

A couple of other abbreviations relevant to this document are ESL (Electronic Sys-
tems Laboratory), and DSR (Division of Sponsored Research).

We have not attempted to try for consistency among the alternatives of “Comp
Center,” “Computer Center,” and “Computation Center.”

David Walden, Chair
IEEE Computer Society History Committee
June 1, 2011
dave@walden-family.com



1. Early history of CTSS

Time-sharing was an idea for which the time was technologically ripe in 1961. Various
people were talking about time sharing; and, over the next decade or two, many time-
sharing systems were developed.

From the existing historical record,1 we can piece together a sketch of the people
and ideas that resulted in CTSS being created at MIT in 1961, becoming the first significant
demonstration that time-sharing was really possible.2 This chapter does not describe
CTSS, only its early history. For a description of CTSS, read Section 2 before or after this
chapter, or in parallel.

Fernando Corbató transferred from Caltech to MIT to work on his PhD in physics. At
MIT Corby (as he is called by everyone who knows him), became a student of Professor
Philip Morse. Morse was a physicist, and is called the father of operations research
by some; he had insight that computers and computation were going to be a big deal
before many others came to understand it. Morse arranged a research assistantship that
allowed Corby to become familiar with the then current computer technology — from
punched cards to programming the Whirlwind computer (the early core-memory-based,
MIT-developed computer at which a generation of later computing innovators got their
first taste of interactive computer access). As part of Corby’s thesis work, which involved
“doing energy band calculations in graphite, in carbon,”3 he also learned to “write big
programs, to debug them, to get a complete hands on feel for working with programs,
organizing them, and learning the ropes of how to use a computer.” John Little and Corby
also used Whirlwind to create thick book containing a “numerical table of coefficients for
expanding spheroidal wave functions.”4

After his PhD, Corby was hired by Morse as a research assistant in the Computation
Center, of which Morse was head. Morse had arranged for IBM to provide an IBM 704
computer to the MIT Computation Center. Morse put Corby in charge of managing other
Computation Center research assistants, giving Corby a bit of administrative experience.
Corby also got to attend meetings SHARE (the IBM user’s group) to thus keep up with
what else was going on in computing. Eventually Professor Frank Verzuh, who was
associate director of the Computation Center (Morse was head), left and Corby took over
as associate director.

The Computation Center had opened in 1957 and by 1958 and 1959, it was over-
loaded. People in science and engineering were using computers more, which FORTRAN
had helped facilitate. However, typically it took repeated batch submissions to get a
program working. Batch processing maximized utilization of the computer rather than
optimizing throughput of getting programs written.

The people who had had hands on experience with computers such as Whirlwind,
the TX-0 (an early transistor-based computer developed at MIT Lincoln Laboratory and

1 Corbató63a (preface), Corbató89, Corbató06, Garfinkel99, Hauben97, McCarthy89, MIT92a.
2 The vendors of the then prevalent batch processing computer systems were mostly not thinking
in terms of time sharing in 1961. 3 Corbató06, p 5. 4 Corby has said that this was “one of the
earliest examples of trying to do automatic printing.”



2 Early history of CTSS

later moved to RLE in Building 20 at MIT), and so on were particularly anxious to move
computers and computing in the direction of interactiveness with the computer. In
particular Professor John McCarthy, who had come from Dartmouth to be on the MIT
faculty, was promoting the idea of time sharing. (According to Corby, McCarthy did the
best job of articulating the need for interactive computing.) Also Professor Herb Teager
was interested in hardware for time-sharing, and Morse had arranged some funding for
him, and he was going to develop a time-sharing system.

Corby saw Teager’s ideas as too grandiose and thought that a modest demo could
be created on the IBM 709 in the computer center that would help people grasp why
interactive computer use might be a good thing.

Corby states that he began talking with Marge Daggett (then Marge Merwin) and
Bob Daley of the Computation Center staff about the system design in the spring of
1961, and the original demonstration was working by November of that year. They got
IBM to provide an interrupt capability for the machine (an off-the-shelf change) which
allowed them to take control of the machine. They created a special version of the
operating system (which came to be known as CTSS). This operating system set aside 5
kilowords of memory (of 32kw total) for the time-sharing supervisor (and for buffering
typewriter terminal input and output). Herb Teager had made four Flexowriters into
special terminals, and these would work with the IBM 709. CTSS used tape drives to store
the programs and files of the users of the four terminals. It was crude, but that was the
original configuration for the desired demonstration of interactive computer use, and it
allowed the traditional batch processing system to still operate (that was the “compatible”
part of Compatible Time-Sharing System). Corby wrote the now famous first CTSS paper,
with Daggett and Daley listed as co-authors,5 in January 1962 for presentation in May
1962.

I asked Corby how it came to be that Marge and Bob were the other earliest involved
people in CTSS. Corby explained,6 “CTSS started out not as a planned project, but rather
as an effort to see if the timesharing concept, advocated eloquently by John McCarthy,
could be demonstrated by some judicious programming. Marge and Bob were both
interested and were probably the two best programmers on the staff. So what began as a
demo turned into a more and more viable system as the pieces began to fall in place.”

Marge remembers that initially only Corby and she were working on the project,
spending “a lot of time conferring and hashing and re-hashing problems.” She also
remembers, “having to do testing at odd hours and sitting at a listing after 5pm trying
to figure out what went wrong.” She remembers it was a big exciting day when it finally
worked for two typewriters. “There was still a lot to do, but conceptually it was pretty
much there — very exciting.”7

Bob remembers Corby writing the core of the time-sharing system himself, using
three tape drives to swap users out of memory and another three tape drives to hold
user data. User data could be added to the end of the user data tape. This 3-user system
demonstrated the basic principles of time sharing. It was demonstrated frequently,
according to Bob, and he can’t name a specific demonstration date.8 Marge remembers
that Corby certainly wrote a lot of code in the supervisor, with all of the work on queuing
being his. She remembers her early involvement being with interrupt handling, saving
the state of the machine, various commands (and what was a command and what was
not), character handling, and also crude methods for inputting and editing lines for the
demos. She remembers a lot of “back and forth” about what various states were — the
distinction between dead and dormant, waiting, etc. Marge says that she “worked in the
underpart of the supervisor.”

The demonstrations of CTSS helped convince people at MIT about the value of time
sharing, and Phil Morse in turn convinced IBM to upgrade the 709 (a tube machine) to a

5 Corbató62. 6 2011-03-05 email. 7 2011-03-04 phone interview, page 22. 8 2011-02-28
phone interview, page 24.



Early history of CTSS 3

7090 (a transistor machine). This upgrade began in the spring of 1962 and was done by
late summer. As part of that upgrade, they added an additional 32K words of memory
(which allowed much more space for the time-sharing supervisor). An IBM 1301 disk
memory was also added which replaced tape drives for swapping user program and
storing user files. They obtained an IBM 7750 terminal controller which could support
up to 32 terminals and then some early modems.

Marge Daggett married in February 1962, and took a leave of absence surrounding
the birth of a child from approximately November 1962 through April 1963. In May 1963
she returned to part-time work and no longer participated in the mainstream of CTSS
development.

Bob remembers that one day Corby gave him a document on a 1301 disk from IBM
and told him that they were getting one of these. There was no existing software for
the 1301. Corby had some ideas about how to use the 1301 but basically told Bob to
figure out how to use it as part of CTSS. Bob developed the first user file system for a
time-sharing system, including a capability for backups.

According to Corby,9 by the late spring of 1963 they were “beginning to run CTSS
with this new configuration involving the extra bank of memory, the 1301 disk drive, and
the 7750 hardware. We were in place to be the workhorse for the Project MAC summer
study which was to take place that summer.”

In 1962 J. C. R. Licklider, also a visionary about time-sharing who had been doing
his own experiments with John McCarthy and Ed Fredkin at BBN (see Section 5), became
the first director of the Information Processing Techniques Office at ARPA. There he
funded MIT’s Project MAC.10 ARPA also funded a second CTSS system (that resided at
545 Technology Square on the edge of the MIT Campus) for use by Project MAC. The
second system was run primarily as a time-sharing system.

By 1973 it was time to retire the 7094s and CTSS. The Computation Center 7094
was returned to IBM in late 1968. The Project Mac CTSS system was shut off in May 1973.

Of the CTSS era, Corby says,11 “What is becoming clear is that the details of those
days are no longer crystal clear! In many ways, the system programming of those early
days was cut-and-paste in that one used a working assembler or a compiler and glued
them together. We gradually built CTSS piece by piece, adding a major telecommuni-
cations controller (IBM 7750), a second bank of core memory, and a large disk file for
storage of user programs.” Corby suggests that, because they did not have to deliver on
any promises, they were able to take their quite successful incremental approach.

9 Corbató06, page 11. 10 MIT92f. 11 2011-03-05 email.



2. The IBM 7094 and CTSS at MIT

By Tom Van Vleck

Editors’ note: Over 16 years, Tom Van Vleck’s web page on the “The IBM 7094 and
CTSS”1 has been growing incrementally. It is a mix of items and topics of which Tom says,
“Basically I was trying to emphasize what I knew first hand, with information from others
for context.” We greatly appreciate Tom’s work in adapting the content of his web page
for use here.

This note describes my experience at MIT with the IBM 7094 and the CTSS operating
system.

One reason I wanted to go to MIT was my interest in computers.2 When I entered
MIT as a freshman in 1961, I often passed the glass wall that let passers-by in Building
26. see the Computation Center’s 7090, in a computer room which seemed about the
size of a basketball court. You could see the tape drives spin and the lights blink.

Figure 2.1: An IBM 7094 (Photo courtesy of the IBM Corporation.)

MIT’s mainframe computers
The MIT Computation Center got its IBM 7090 in the spring of 1962, replacing a 709,
and upgraded its 7090 to a 7094 by 1963. In the mid-1960s, IBM’s 7094 was one of the
biggest, fastest computers available, able to add floating numbers at a speed of about

1 VanVleck11. 2 VanVleck95.



6 The IBM 7094 and CTSS at MIT

0.35 MIPS. A standard 70943 had 32kilowords of 36-bit-word memory (henceforth called
32K). Its data channels could access memory and run simple channel programs to do
I/O once started by the CPU, and the channels could cause a CPU interrupt when the I/O
finished. A 7094 cost about $3.5 million, back when that was a lot of money.

IBM had been generous to MIT in the fifties and sixties, donating or discounting
its biggest scientific computers. When a new top of the line 36-bit scientific machine
came out, MIT expected to get one. In the early sixties, the deal was that MIT got the
computer for one 8-hour shift, 40 or so other New England colleges and universities got
a shift, and the third shift was available to IBM for its own use. One use IBM made of
its share was yacht handicapping: the President of IBM raced big yachts on Long Island
Sound, and these boats were assigned handicap points by a complicated formula. There
was a special job deck kept at the MIT Computation Center; and, if a request came in to
run it, operators were to stop whatever was running on the machine and do the yacht
handicapping job immediately.

The Deputy Director of the MIT Computation Center was Prof. Fernando J. Corbató,
known to everybody as Corby. The Director was Prof. Philip M. Morse, who didn’t seem
to be involved in the day-to-day operations of the Center; Corby ran the whole thing.
When you submitted batch processing jobs, you specified your problem number and
programmer number. The lower your number, the longer you had been associated with
the Comp Center. Corby’s was 3.

FMS and Batch Processing. The 7090 and 7094 were operated in batch mode, controlled
by the FORTRAN Monitor System (FMS). Batch jobs on cards were transferred to tape on
an auxiliary 1401, and the FMS monitor read one job at a time off the input tape, ran it,
and captured the output on another tape for offline printing and punching by the 1401.
Each FMS user job was loaded into 7094 core by the BSS (Binary Symbolic Subroutine)
loader along with a small monitor routine that terminated jobs that ran over their time
estimates. Library routines for arithmetic and I/O were also loaded and linked with the
user’s program. Thus, each user’s job had complete control of the whole 7094 — all 32K
of memory, all the data channels, everything.

MAD Language. MIT and the University of Michigan were both 7094 owners, and their
computation center people were colleagues who traded code back and forth. When I was
a freshman in 1961, we used FORTRAN in the elementary programming course, but by the
time I was a sophomore, MIT had installed Michigan’s MAD (Michigan Algorithm Decoder)
language,4 written by Graham, Arden, and Galler, and was using that in most places that
a compiler language was needed, especially computer courses. MAD was descended from
ALGOL 58: it had block structure and a very fast compiler, and if your compilation failed,
the compiler used to print out a line printer portrait of Alfred E. Neumann (MIT took that
out to save paper). Mike Alexander says, “MAD was first developed about 1959 or 1960
on a 704, a machine which makes the 7094 look very powerful indeed.” At that time
MAD ran under UMES, the University of Michigan Executive System, derived from a 1959
GM Research Center executive system for the IBM 704 that was one of the first operating
systems.

Part of the Michigan/MAD code was a replacement for the standard FORTRAN
output formatter routine (IOH). (Programs written in FAP — FORTRAN Assembly Program,
the 7094 assembler — could use special characters, such as parentheses, in external
names. I/O library routines were often given names that FORTRAN and MAD programs
could not generate, to avoid name conflicts.) The MIT/Michigan version of IOH supported
additional format codes used by the MAD language and had other internal improvements
over the IBM version. One change was to use the extra index registers that the 7094 had
and the 7090 didn’t. And buried deep in the code, there was the line of code

SXA VR16,1 ’SOMEBODY HAS TO SAVE IT’ SAYS BOB CRABTREE

3 Weik64. 4 MAD62, MAD66.



The IBM 7094 and CTSS at MIT 7

Noel Morris and I made up the Bob Crabtree Society, open to people who knew where
that comment was and what it did.

Early Time-Sharing at MIT
MIT professors, such as Herb Teager and Marvin Minsky, wanted more access to the
machine, like they had had on Whirlwind in the fifties and the TX-0 in the sixties, and
quicker return of their results from their FMS jobs. Professor John McCarthy wrote an
influential memo titled “A Time Sharing Operator Program for Our Projected IBM 709”
dated January 1, 1959, that proposed interactive time-shared debugging. These desires
led to time-sharing experiments, such as Teager’s “time-stealing system” and “sequence
break mode,” which allowed an important professor’s job to interrupt a running job, roll
its core image out to tape, make a quick run, and restore the interrupted job. McCarthy’s
Reminiscences on the History of Time Sharing5 describes his and Teager’s role in the
beginnings of time-sharing. Teager and McCarthy gave a presentation titled “Time-Shared
Program Testing” at the ACM meeting in August 1959.

CTSS development had started the same year I entered MIT, led by Corby, Bob Daley,
and Marjorie Merwin-Daggett. A version of CTSS that swapped four users to tape was
demonstrated on MIT’s IBM 709 in November of 1961. This system could support four
Friden Flexowriter terminals directly connected to an I/O channel of the computer. CTSS
was described in a paper at the 1962 Spring Joint Computer Conference,6 even though the
software wasn’t quite working on the IBM 7090. Much of the CTSS research was funded
by US National Science Foundation grants to the Computation Center. Development
continued through 1962 and 1963, and system capabilities and usage continued to
expand. Service to MIT users began in the summer of 1963.

Corby was interviewed by John Fitch for the Science Reporter program on WGBH-TV
on May 9, 1963. He demonstrated CTSS running on MIT’s 7090.7 The program aired on
WGBH-TV on May 16, 1963, and was titled “Solution to Computer Bottlenecks.”

Figure 2.2: Corby on WGBH

CTSS
CTSS was called “compatible” in the sense that FMS could be run in B-core as a “back-
ground” user, nearly as efficiently as on a bare machine, and also because programs
compiled for FMS batch could be loaded and executed in the “foreground” time-sharing
environment (with some limitations). Background jobs could access some tape units and
had a full 32K core image. This feature allowed the Computation Center to make the
transition from batch to timesharing gradually, and to retain the ability to run “dusty
decks” and software from other institutions. The Comp Center got the CTSS RPQs added

5 McCarthy83. 6 Corbatø62. 7 Corbató63b.



8 The IBM 7094 and CTSS at MIT

Sidebar: My Undergraduate Computer Experience

As a freshman, I took course 6.41, Introduction to Automatic Computation, which taught
me machine language and FORTRAN. The 6 in the course number mean that it was offered
by the Electrical Engineering department. You couldn’t major in computers at MIT in
1961 — or anywhere else either. There were about a dozen computer-related courses
available in the catalog, in four or five departments, and I wanted to take them all. I
was in the Mathematics department, which didn’t seem to believe in computers at all: I
remember my Numerical Analysis laboratory, with its rows of Marchant calculators.

I took course 6.251, Introduction to System Programming, as soon as I could. When I
took the course, there were a few exercises in MAD, and then we were presented with CAP
(Classroom Assembly Program), a simple assembler for the 7094, and assigned a series
of problems to improve it. The assembler itself was written in FAP, and we submitted
batch jobs in the form of update runs that applied “alters” (symbolic patches) to the CAP
source, reassembled and linked it, and ran a standard test suite. You got so many points
for adding the * meaning “the current instruction counter,” so many more for putting in
a simple expression evaluator, and so on. The textbook was by Corbató, Poduska, and
Saltzer.8

I had programming jobs back home each summer, and after taking 6.251, I looked for
part-time programming jobs at MIT. In 1963–1964 I had part-time work at MIT Project
MAC, using CTSS, in Professor Teager’s group.

In 1964–1965, I found a different job as a part-time programmer for Prof. Ithiel de Sola
Pool in the MIT Political Science department. I wrote event simulation, survey analysis,
and statistical code for the 1401, 7094 FMS and CTSS. As part of this activity, I learned
as much as I could about CTSS, and started to make user contributions. I worked with
another student programmer, Noel Morris. We shared a windowless office in the library
stacks: the good thing was that it had an IBM 1050 terminal.

to the blue machine and began running CTSS in 1965. (RPQ stood for Request Price
Quotation. IBM, in those days, would engineer and sell features not part of the standard
product, for a price.) The configuration for both machines included about a dozen tape
drives, a swapping drum, and a 1302 disk file with a capacity of about 36 megabytes,
shared among all users of the machine.

The CTSS supervisor provided up to about 30 “virtual machines,” each of which
was an IBM 7094. One of these virtual machines was the background machine, and had
access to tape drives. The other virtual machines were foreground users: these virtual
machines could run regular 7094 machine language code at 7094 speed, and could also
execute one extra instruction, which invoked a large set of supervisor services. These
services included terminal I/O and file system I/O. Programs could be written for the
foreground environment in any language available for the 7094; libraries were provided
to allow compiler languages such as MAD to call on supervisor services. CTSS provided a
file system that gave each registered user a separate directory of disk files.

The key features of CTSS were virtual machines, hardware isolation of users from
the supervisor and from each other, and a per-user disk file system. Because the user
virtual machine supported the same architecture and instruction set as the 7094, CTSS
was able to support a large body of applications originally developed for the FMS batch
environment at MIT and elsewhere.

CTSS software included not only the supervisor but also a set of “foreground”
command programs and subroutine libraries. Many of these commands read files from
the user’s file system storage and wrote other files; for example, the MAD compiler
read a disk file containing a program source and wrote a disk file containing machine

8 Corbató63c



The IBM 7094 and CTSS at MIT 9

Figure 2.3: 7094 console

instructions in BSS (binary) format. Most of the foreground “MAD command” (the program
invoked to process a command line beginning with MAD) was identical to the background
MAD compiler on the FMS system tape, with the addition of a wrapper to handle command
line options, and replacements for the input and output routines to read and write disk
files instead of tape, and to write error messages to the user’s terminal.

Project MAC
In 1963, MIT obtained funding from ARPA for Project MAC, an interdepartmental labora-
tory to explore development and use of time-sharing. Its first major activity was the 1963
Project MAC Summer Study, where many of the big names in the computing world spent
time at Project MAC using the brand new idea of a time-shared computer. Project MAC’s
plans included the development of a next-generation time-sharing system called Multics.
CTSS was to be used as the programmers’ tool to develop this new system, as well as the
tool to support other research projects, such as database and language research. The
Director of Project MAC was MIT Professor Robert M. Fano, a well respected electrical
engineering professor and one of the authors of the canonical circuit design textbook.
His Assistant Director was Dick Mills, who had worked on Whirlwind and contributed to
early CTSS development.

Figure 2.4: Prof. Fano using a Model 35 TTY

YouTube has a movie clip from 1964 of Professor Fano describing time-sharing and
using CTSS on a Model 35 Teletype.9

9 Fano64b.



10 The IBM 7094 and CTSS at MIT

Sidebar: My CTSS Experience After Graduation

When I graduated in 1965, I transitioned to a full time programming job, working for
the Political Science department, as did Noel Morris. We were able to get offices in Tech
Square, near a public terminal room, and worked on multiple projects. At the same time,
we explored and investigated how CTSS worked and clever things we could do with it,
and contributed some software to the CTSS community. My interests were more in the
operating systems area than in data crunching, and in time I transitioned over to working
for Project MAC, helping Dick Mills administer CTSS.

The Multics project had begun and was a big consumer of the MAC CTSS. There was
much more demand than one 7094 could provide. People resources were also stretched:
Corby concentrated on building and leading Multics and gave up his role as Deputy
Director of the Comp Center. Dick Mills was given the new post of MIT Director of
Information Processing Services, reporting to the Provost. In 1965 the Comp Center got
the RPQ changes necessary to run CTSS and the additional hardware needed, and began
to run its own CTSS. Almost all of the original designers moved on from Comp Center to
Project MAC, or to other jobs such as IBM Cambridge Scientific Center, where CP/CMS
was built. The MAC people who understood CTSS, like Bob Daley, were under pressure to
not waste their time tweaking it — just stabilize it to make it a usable tool, and provide a
copy to Comp Center. So I started out at Project MAC as a flunky taking over the CTSS
jobs that other more important folk were supposed to relinquish. I was ecstatic: CTSS
was arguably the best working timesharing system in the world, and there was a ton to
learn and as much responsibility as I could handle. As the Multics project use of CTSS
expanded, I helped sign up users from Bell Labs, who would use the MAC CTSS by dialup
from New Jersey. I may have set up CTSS accounts for Ken Thompson and Dennis Ritchie,
among others.

As time went on, I took on projects for Multics as well as CTSS, initially writing design
papers on how to do resource accounting and system admin for Multics. CTSS required
less support and once Multics became self-supporting, MIT went down to one 7094 run-
ning CTSS, moving the “red machine” from MAC to the new Information Processing Center
in Building 39. The Comp Center folks assembled a team of interested undergraduate
and part-time system programmers to support CTSS, and Roger Roach was one of the
leaders. I worked on Multics system boot and other facilities, and then took a job at the
Information Processing Center managing system programming for CTSS, an IBM 360/67
running CP/CMS, and the features of Multics that IPS would need to be able to run a
service on it. Roger became the leader of the CTSS team.

By the time of the 1963 Summer Study, CTSS was in use as a service on the Compu-
tation Center 7090, supported by hardware RPQs. Computer researchers from all over
the country, from academia and industry, used CTSS to try interactive computing.

In October 1963, Project MAC got its own 7094 (paid for by ARPA) in the new Tech
Square building behind MIT. The Computation Center machine, upgraded to a 7094, ran
CTSS and FMS in the background; it had the standard blue side panels. The Project MAC
machine had red side panels, and staff often referred to “the red machine” or “the blue
machine.”

By 1965 most of the CTSS development group had moved over to Project MAC and
was beginning the design of Multics. The last big CTSS project was a new, much better,
file system, as a kind of parting shot, to ensure that the system would be adequate to
support Multics development, and that the Computation Center CTSS service would be
robust.



The IBM 7094 and CTSS at MIT 11

CTSS Features

Shared Files. The biggest discovery from the CTSS experience was the importance of
online file systems and file sharing. The initial 1960 vision timesharing was focused on
access to CPU and memory. When that was implemented, feeding input into programs
and capturing their results required a way to have rapid access to per-user data; a disk
filled that need. Some early systems stopped there, essentially dividing the disk storage
into per-user chunks. As CTSS developed, we provided ways for users to share their files
on disk, through “common files” and “linking,” and the collection of on-line shareable
data became the seed of a community of information sharers. We are now seeing a shift
in computer usage from individual piles of files on individual PCs to storage and sharing
“in the cloud” that parallels the discoveries about what is important that we saw with
CTSS in the 1960s. It may be that “cloud computing” will encounter again some of the
same hard lessons about security and community that we learned at Project MAC.

7094 CPU Modifications. The hardware RPQs that made CTSS run on MIT’s 7094s
added an interval timer (B/M 570220) and memory boundary and relocation registers
(RPQ E007291) to the 7094 processor. In addition, the MIT machines had two 32K core
memory banks instead of one (RPQ E02120). Core bank A held the CTSS supervisor, and B
Core was used for user programs. More importantly, the RPQ made the 7094 a two-mode
machine. When the machine was running a program in B-core, many instructions were
forbidden: executing them caused the machine to trap and take its next instruction from
A-core. In particular, I/O instructions were forbidden as were attempts to switch core
banks.

By CTSS convention, user programs called on supervisor services, such as the file
system, by executing a TSX ADDR,4 where ADDR held TIA =HWRFLXA (where WRFLXA was
the name of the entrypoint being called). The TIA instruction was illegal in B-core mode,
so the 7094 CPU trapped into A-core. The CTSS supervisor running in A-core invoked a
module named PMTI (Protection Mode Trap Interpreter), which looked up the BCD name
of the supervisor entrypoint WRFLXA, found its location, and made the transfer.

Memory Boundaries and Swapping. CTSS used the modified 7094’s memory boundary
register to limit user jobs’ access to only part of B-core, so that the supervisor didn’t have
to swap 32K to the drum for every job. An algorithm called the “onion skin” left parts of
a big job’s core image in memory if a little job ran next, and handled all the complicated
space accounting and reassembly of images. If the drums filled up, swapping spilled to
disk.

(I remember visiting SDC in Santa Monica, in 1967, and seeing their AN/FSQ-32
timesharing system there, which lacked these features. When you issued a command,
the swap space was statically allocated, and if there wasn’t enough to go around, you
might have to keep trying. When the system printed LOAD OK ON 9, it meant you had
successfully claimed enough drum to run.)

Indirect Addressing. The 7094 didn’t recognize the indirect flag in an indirect word, but
it had the XEC opcode, which executed an instruction out of line, and if you did XEC *
the CPU would sit there taking “I-cycles,” uninterruptible, until an operator manually
reset the CPU. People were warned not to do this. If they did it while CTSS was running it
froze the system, and operations took a core dump and restarted CTSS, causing all active
users to lose their work. We system programmers would analyze the dump and identify
and fuss at the user. (One such crash was caused in 1965 or so by Joel Moses, who was
running a big symbolic integration program written in LISP. When we complained, he
said it was an honest mistake, caused by using the RPLACD LISP command. I have been
reluctant to use RPLACA and RPLACD ever since.)



12 The IBM 7094 and CTSS at MIT

Password File Story. The one time XEC * was used in a good way was the day in 1966
that a certain Computation Center administrator’s mistake caused the CTSS password
file and the message of the day to be swapped. So everybody’s password was displayed
to each user who logged in. (The editor in those days created a temporary file with a fixed
name.) This was before (and was the source of) the idea of one-way encrypting passwords.
Bill Mathews of Project TIP noticed the passwords coming out, and quickly entered the
debugger and crashed the machine by entering an XEC * instruction. Naturally this
happened at 5 PM on a Friday, and I had to spend several unplanned hours changing
people’s passwords. (The problem is described and analyzed in Corby’s Turing Award
Lecture.10)

Terminal Access. By 1963 CTSS provided remote terminal service to dial-up terminals
connected by modem to a specialized telecommunications computer, the IBM 7750.
Model 35 Teletypes were used at first, followed by IBM 1050 terminals and IBM 2741s.
The 7750 and the IBM Selectric terminals were designed for other uses, such as stock
trading and airline reservations, and CTSS adapted to the design of these devices. We did
specify that certain RPQs had to be added to the 2741, so that its keyboard would not
lock up after every line. We also required that remote terminals on CTSS have a “terminal
ID” that would be sent at dialup time, and CTSS users would look at the output of the who
command to see where their friends and colleagues were connecting to the system from.
Terminal access for Teletype terminals was at 110 baud. The 1050 and 2741 terminals
could support 134.5 baud. All of these devices were supported over dial-up modems,
accessed via a private phone exchange at MIT.

Notable CTSS Applications
There were other significant improvements to CTSS, some contributed by the user com-
munity.

Electronic Mail. Noel Morris and I wrote a command, suggested by Glenda Schroeder and
Louis Pouzin, called MAIL, which allowed users to send text messages to each other; this
was one of the earliest electronic mail facilities.11 (I am told that the Q-32 system also
had a MAIL command in 1965.)

RUNCOM and the Shell. Louis Pouzin also invented RUNCOM for CTSS. This facility, the
direct ancestor of the Unix shell script, allowed users to create a file-system file of
commands to be executed, with parameter substitution. Louis also produced a design
for the Multics shell, ancestor of the Unix shell.

Command Abbreviation and Instant Messaging. Noel and I created a replacement com-
mand processor, .SAVED, partly inspired by the promised Multics shell features. It
supported user-defined abbreviations, multiple commands on a line, and inter-user in-
stant messaging. The combination of .SAVED and RUNCOM allowed CTSS power users to
define their own productive command environments.

RUNOFF. Jerry Saltzer wrote one of the very first computer word processing programs,
RUNOFF, for CTSS in 1963 and 1964. This program is the ancestor of Unix roff, nroff,
and similar text formatting facilities for many other systems. Users edited the input files
for RUNOFF with a special editor, TYPSET, that supported upper and lower case letters.

Jerry has placed the original CTSS documentation for RUNOFF online.12 The source
of RUNOFF is included in the Pierce Collection tapes.13

Graphics. The ESL14 Display, familiarly known as The Kludge, was an interesting device
attached to the Project MAC 7094. It consisted of a PDP-5 computer with a vector display
scope and a controller that interfaced directly with channel D. This device could be used

10 Corbató91. 11 VanVleck01a, Morris11. 12 Saltzer64, Saltzer66. 13 Pierce03, Pierce04.
14 Electronic Systems Laboratory.



The IBM 7094 and CTSS at MIT 13

for interactive graphics with light pen and mouse input. It is described in a report by
Dan Thornhill et al.15.

QED Editor. QED was a text editor contributed to the CTSS community by Ken Thompson,
a Multics programmer at Bell Labs. This line-oriented editor was influenced by the
character-oriented QED editor on the SDS-940. One of Ken’s major additions was regular
expression searching and substitution. QED was ported to Multics BCPL by Ken and
Dennis Ritchie. QED was programmable: it supported multiple buffers, and a user could
execute the contents of a buffer containing editor commands. Some remarkably arcane
editor applications were written using QED.

Corby’s Leadership
Corby inspired his whole team with the vision of interactive, powerful, personal com-
puting. Time sharing was necessary because powerful computers were so expensive
that they had to be shared: hence the “computer utility.” Our goal was to empower the
individual programmer. Batch processing was still quite young, but its proponents were
vicious in putting down any newer idea.

Corby also fostered a wonderful set of design and implementation skills in his team.
Honesty, peer review, unselfishness, concentration on essentials rather than frills, and
rapid production of results were things we learned from him. Tom De Marco wrote much
later about “jelled” teams:16 my time working for Corby on CTSS and Multics was when I
first enjoyed one.

Story: Corby’s Hardware Transient and the Blackout
During the fall of 1965, the Computation Center was trying to bring up CTSS on the blue
machine, and requesting help from the former CTSS developers at Project MAC when
they ran into problems they couldn’t handle. The blue machine kept crashing in the disk
backup software, in a way we’d never seen, and the dumps didn’t make sense. Hardware
diagnostics showed no problem; the IBM customer engineers insisted the machine was
fine. Bob Daley and Stan Dunten, in particular, were called on repeatedly to try to figure
out what was going on. Corby involved himself too, and hypothesized a “hardware
transient” that zapped some registers. Finally Mike Padlipsky and Charlie Garman took
over the blue machine in the middle of the day, and loaded a one-card program with a
simple test loop, and left it running. After about ten minutes of execution, the failure
count in an index register suddenly began counting up: they had caught the bug! (The bug
was something like: the TXL and TXH opcodes sometimes reversed roles — in only one of
the two core banks — if a big enough truck went by on Vassar Street.) The programmers
heaved a sigh of relief, turned the machine over to the IBM customer engineers, and
headed over to Tech Square House17 to celebrate. Quite a few people came down to the
bar for a drink, when suddenly the lights went out. I remember I ran up nine flights of
stairs to help crank the tape out of the tape drives by hand, because the tapes could be
damaged if they were in the drive when power came back on. I needn’t have run: it was
November 9, 1965, and the lights were out over the entire East Coast, and stayed out
until the next morning.

Old Age
In late 1968, the MIT Computation Center returned the blue 7094 to IBM. The red 7094
from Project MAC was moved from Tech Square to the new Information Processing
Center in building 39, and Multics developers shared CTSS resources with general MIT
time-sharing users until Multics was self-supporting in early 1969.

CTSS continued in use for several more years, with gradually declining usage, as
MIT computer users switched to OS/360 batch, CP/CMS timesharing on the 360/67, or to
Multics. One project, called the Overlap Project, was funded to support 7094 usage until
equivalents for some CTSS social-science tools were found or created on other machines.

15 Thornhill68. 16 DeMarco99. 17 VanVleck01b.



14 The IBM 7094 and CTSS at MIT

There was one kind of funny problem with this long decline of CTSS: every year,
there was a fire drill as we tried to remember what you had to do to create a system
for the next year. The Chronolog clock attached to tape channel E of the machine
provided a date and time in BCD, but without the year; that came from a constant in
the supervisor, and each year we had to recompile one small module, and relink the
supervisor, the salvager, and a few other standalone utilities. As the original CTSS crew
gradually moved on to other jobs, fewer and fewer people knew how to carry out this
task, but we always managed to figure out how. And each year, we considered making
the constant a “configuration item” somehow, and decided not to bother, because the
system wouldn’t last another year.

The 7094 was a fine machine, but by the time it was over ten years old, it had become
expensive to maintain, hard to find expert programmers for, and had been deserted by
most users in favor of faster and more modern machines. A group of students proposed
that they’d take over the machine and run it for student computing; the floor space, air
conditioning, and maintenance costs made this impractical, but some of these students
went on to found MIT’s Student Information Processing Board,18 which supported student
computing at MIT in many ways, and still exists today.

When CTSS shut down, it was time for it to go: the hardware was becoming ancient
and flaky. But looking at what it could do, and what people did with it, shows that many
subsequent systems were less capable and vastly more wasteful.

There was a ceremony held in 1974, the year after we shut CTSS down for good,
to honor those who worked on the system and those who supported it. A list of people
involved was compiled.19

Figure 2.5: I was there the day Roger Roach finally shut down the red machine
for good, on July 20, 1973.

18 Chuu01. 19 VanVleck03



The IBM 7094 and CTSS at MIT 15

Documentation, Simulator, and Other Time-sharing Systems
The website version of this section includes a list of nine CTSS documents. These are
included in the Bibliography section of this brochure.20

Dave Pitts has created a version of CTSS running on a 7094 simulator he created by
substantially rewriting a 7090 simulator originally written by Paul Pierce. You can log in,
execute commands, and compile and run MAD and FAP programs.21

During more or less the same era as the CTSS era, other time-sharing systems were
developed elsewhere in the country:

• RAND’s JOSS system was operational on JOHNNIAC in 1963 and was later ported to
a PDP-6.

• The PLATO II system was built by Donald Bitzer at the University of Illinois and
demonstrated in 1961.

• RAND’s SDC Time-sharing system on the AN/FSQ-32, led by Ed Coffman, Jules
Schwartz and Clark Weissman, was operational in 1963.

• Andy Kinslow at IBM built a system called the Time-Sharing Monitor System on a
modified 7094. A paper describing it was published in 1964.

• Dave Evans and Harry Huskey at Berkeley built a system called Project GENIE on a
modified SDS 930 in 1964.

• John Kemeny and Thomas Kurtz built the Dartmouth time-sharing system in 1964
on a GE-255.

Section 5 of this brochure describes several of those other time-sharing system that were
developed in the MIT and Cambridge environs.

20 Brandel99, Corbató62, Corbató63a, Creasy81, Crisman65, Fano64a, Pierce03, Pierce04, and
Saltzer65. 21 Pitts10.



3. Uses

Our reading of the literature relating to CTSS suggests several reasons why the time was
right for the system’s development.

• The MIT Computation Center was swamped with demand for computing capability,
and something needed to be done.

• Some users wanted faster (i.e., interactive) access to the computer — doing the same
things they had been doing but without the delays inherent in batch processing in
their edit-compile-run-debug cycle.

• There were some inherently interactive activities that could not be done in batch
mode. Joe Weizenbaum’s ELIZA program1 that simulated the interactions between
a patient and his or her mental therapist is an example of a system that was first
implemented once time sharing was available.

• The idea of time sharing was “in the air.” Someone was going to do it soon, and MIT
computer researchers naturally were at the forefront of such developments. Also,
getting CTSS demonstrable provided additional funding opportunities for research.

MIT was also a natural environment in which to develop a powerful computer time-
sharing. A significant subset of users was willing to expend effort to learn something
new and potentially beneficial. Thus, the system did not need to be oversimplified. For
instance, it did not need to be a single language time-sharing system like the JOSS2

system. With CTSS good balance between simplicity and powerful capabilities could be
found.

CTSS was also able to evolve continuously. The system programmers were users of
the system, and they put in changes rapidly and incrementally — not infrequent “releases.”
The focus on a mostly local community of users made dissemination of information about
these frequent changes quite possible; and it got even easier when the documentation
was moved to be online.

Relatively early in the development of CTSS, it became clear that the initial focus
on providing machine cycles to users more effectively was only half the benefit of time
sharing. An equally big, perhaps bigger, impact came from having an online file system
and the resulting capability for sharing of data and programs and collaborations by users.
Related to this, Tom Van Vleck has said,3

When CTSS was envisioned, we thought that interactive computing and remote
debugging would be the big impact. It wasn’t. Providing the on-line file system,
storing user files on the machine instead of in card decks in the users’ offices,
turned out to be a much bigger impact, for two reasons. One was that people
began to develop tools to operate on these shared files: to generate program
source, to use data in multiple ways, to create new things from old. The other
was that people found ways to share information through the file system. This
started with “common file directories” and led to electronic mail . . . and later
to inter-computer communication. The sharing effect created a community of
users, able to cooperate on big projects and to evolve ideas rapidly.

The rest of this section notes some of the ways CTSS impacted computing and some
of the particular kinds of uses (and users) of CTSS.

1 Weizenbaum66. 2 Ware08, p. 111. 3 March 2011 email.



18 Uses

The most direct impact of CTSS was with the creation of Project MAC and then the
development of the Multics time-sharing system.4 Corby and other MIT faculty and staff
involved with the implementation or use of CTSS wanted to build a follow-on system to
improve on CTSS, and that happened as part of the Project MAC laboratory that had been
created partially based on the existence of CTSS.5

Because Bell Laboratories people were collaborators in the Multics effort before they
left the project and created Unix instead, some of the MIT Multics people feel that Multics
influenced Unix (as it no doubt did to some extent). However, the connection between
Unix and CTSS may be even closer; Unix co-inventor Dennis Ritchie has said,6

In most ways UNIX is a very conservative system. Only a handful of its ideas are
genuinely new. In fact, a good case can be made that it is in essence a modern
implementation of MIT’s CTSS system. This claim is intended as a compliment
to both UNIX and CTSS. Today, more than fifteen years after CTSS was born,
few of the interactive systems we know of are superior to it in ease of use; many
are inferior in basic design.

As already mentioned in this section and elsewhere in this brochure, time sharing
was, in the early 1960s, an idea whose time had come; and CTSS provided a working
demonstration of the feasibility of time sharing that no doubt influenced both the designs
and motivation to build other time-sharing systems. CTSS’s existence was also used to
spread the idea of time sharing. For instance, the U.K. computer scientists David Barron
and Maurice Wilkes gave demonstrations of CTSS to people in the United Kingdom.7

The demonstration of time-sharing at Oxford in 1963 was a demo of CTSS
(Compatible Time Sharing System) . . . Also, the Oxford demonstration wasn’t the
first: CTSS had been demonstrated by Wilkes and myself at the BCS conference
at Edinburgh a year or two earlier, and before that a few of us had used CTSS at
Cambridge courtesy of the GPO. All the demos used a 10 cps Telex connection.

Additionally, CTSS provided a source of real measurements on how time-sharing
worked that impacted the theory of time sharing and the design of other time-sharing
systems.8

CTSS also has been used over the years as an example or case study in classes on
operating system design.

Tom Van Vleck makes the points9 that time sharing at MIT was rapidly adopted for a cou-
ple of reasons: (1) “There was some pent-up demand for computing cycles. Researchers
who had always wanted to compute stuff and finally could. Other researchers thought up
stuff to do because the resource became available.” (2) Some of the quick uptake in use
was perhaps fostered by the funding agencies suggesting that researchers use the new
time-sharing technology to see what they thought about it. “Many different departments
participated in this largesse. Computer time cost hundreds of dollars per machine-hour
in those days, but you could get an allocation of time by writing a research proposal and
some progress reports.”

One can get a feel for the expanse of early use of the CTSS system by looking at the
tables of contents of the progress reports on Project MAC from its inception to July 1965
that are included on pages 353–356 of Fano79.10 In the rest of this section we list a few
specific, and representative, projects that used CTSS. These systems, in turn, in some
cases had great impact on their respective fields.

• Under the leadership of Professor Charles Miller, MIT’s Civil Engineering department
developed the Integrated Civil Engineering System (ICES), with its COGO (COordi-

4 Corbató65. 5 MIT92f. 6 Ritchie79. 7 June 27, 1995 email found on the Internet: from David
Barron to mhouston@mh01.demon.co.uk on with the subject line Linux@UK:Lettertotheeditor.
8 For examples, see the interviews of Scherr and Denning on page 35. 9 March 14, 2011 email.
10 Not all of the activities listed in those progress reports were carried out on CTSS, but undoubt-
edly most of them were.



Uses 19

nate GeOmetry) and STRESS (STRuctural Engineering System Solver) programming
languages that allowed non-computer-programmer engineers to make effective use
of the computer. ICES included a number of other subsystems relating to various
common civil engineering activities.

• Doug Ross’s work with Automated Engineering Design (AED) and Computer Aided
Design (CAD) resulted in the AED-0 programming language and changed the way
computing was done and what was thought of as computable. In particular, it
addressed interactivity and data abstraction. AED-0 was used, in turn, to help
implement many other MIT computer system projects.

• The Kludge display connection to CTSS was mentioned in Section 2 (page 12). The
“AED Applications” notes11 list many many MIT research activities that used this
display and thus CTSS. One of these applications was a project led Professor Cyrus
Levinthal that was the beginnings of interactive molecular graphics.12

• Joe Wiezenbaum’s most CTSS famous project was ELIZA, but he also developed
the OPL-1 system on CTSS, an incremental programming system providing an early
model for how a user to augment both his program and his data base during
successive, widely separated sessions at his terminal.13

• MIT’s Project INTREX14 was another use of CTSS. This early, innovation library
information system project, led by Professor Frank Reintjes, was in some sense the
earliest search engine.

An important and widely demonstrated component of INTREX was the TIP (Tech-
nology Information Program) system developed under the leadership of Dr. M. M.
Kessler.15 TIP was the first system to do “bibliographic coupling,” to allow saving of
search output to be the basis for later searches, and to enable “stem searching.”

• OPS-3, developed by Professor Martin Greenberger et al.,16 was an “on-line process
synthesizer,” a simulation system depending on CTSS to enable the user to iteratively
develop the simulation.

• Finally, CTSS was constantly used for ordinary mathematical calculations (and
various other kinds of problem solving not requiring user interactivity) by various
MIT research projects, because of the convenience and turn-around speed of the
system, and because of the availability of TYPSET17 on the system.

The DYNAMO (DYNAmic MOdels) system, created by Jay Forester’s team, for doing
systems dynamics simulations18 is one such system that benefited from running on
an interactive time-sharing system. While DYNAMO existed before CTSS, and batch
mode users could input punch cards specifying the simulation network and its
parameters and then run the simulation, being able to immediately see the results
of one simulation run and change the simulation network or parameters and do
another run, and to repeat the cycle over and over, helped users get a useful result
faster.

CTSS had big impact in various application worlds not only because it was the
first time-sharing system. MIT was also a major early computer science research center,
and the Institute already had relatively major digital computing facilities and many
researchers in many disciplines willing to jump into the new digital and then interactive
digital world. Many MIT areas of research benefitted from the availability of CTSS, but
CTSS was in the right environment to have its capabilities utilized for many things and

11 http://www.csail.mit.edu/timeline/timeline.php?query=year&from=1963
12 Francoeur02. 13 http://publications.csail.mit.edu/lcs/specpub.php?id=578c
14 Burke98. 15 Bourne03. 16 NANCE96. 17 CTSS command names were stored as a maximum

of 6 characters in the 7094’s 36-bit word. 18 Richardson81.



20 Uses

to have new capabilities developed on top of it. It is not surprising that computing
technology and use of computing technology developed rapidly in the MIT environment.

Also, unlike some of the other well known early time sharing systems (e.g., the
Dartmouth Time Sharing System in its initial implementation as a system for small
student projects written in Basic), CTSS from its earliest operational use provided the
entire computer and all capabilities that could be run on the computer to its users.
Building an “open system” instead of a “closed system” was a big job, but it let users build
big things on top of it, including letting combinations of user, programming languages,
databases, and subsystems work together.



4. Memories and views of CTSS

Parts of this commemorative brochure were drawn from existing historical records, such
as those listed in the bibliography. However, we also took the opportunity to talk (by phone
and via email) with various people who were associated with CTSS over the years or who
have a historical view of CTSS. These notes and transcripts follow. The order of the notes
and transcripts is approximately the order of each person’s initial involvement with CTSS.

Marge Daggett and Bob Daley were project founder Fernando Corbató’s initial col-
laborators in the design and implementation of CTSS. Dick Mills, Tom Van Vleck, and
Roger Roach were (as Tom sees the history) the first, second, and third and last system
administrators (to use modern terminology) for CTSS. Allan Scherr and Peter Denning
studied CTSS as part of their thesis research. David Alan Grier has considered CTSS from
the computer historian’s point of view.

In what follows, we did not attempt to completely reconcile slightly differing memories
of historical details.

Fernando Corbató1

Phil Morse was the head of the Computation Center. It was his initiative and shrewdness
that led to the formation of the Computation Center in 1956. He proposed the deal that
MIT would get one eight-hour shift of time on an IBM 704 computer in return for MIT
administering a second eight-hour shift of time for the 40 or so New England Colleges. In
turn, IBM would maintain the computer system and get to use the third eight-hour shift
for its own purposes.

Thanks to Morse’s initiative, MIT suddenly had to find a location for the new Com-
putation Center. Building 26 was at that time already under construction with a plan for
the building to be “floating” on stilts, (the fad of the day). To the architects chagrin, he
was forced to create a ground floor, computer room, and basement to accommodate the
new Computation Center. The architect got his revenge by making the ground floor be
without exterior windows (only transoms) and encasing the outside walls with blue tiles
to simulate the upper floors of the building floating in the sky.

Morse was also instrumental in getting funding for a dozen Research Assistantships
from the Office of Naval Research, and later getting funding from the National Science
Foundation for the second 32K word bank of memory to be added to the by then IBM
709 for CTSS to use. Morse’s style of management was to spend one intensive day a week
meeting with the senior staff of the Center. My recollection is that it was at one of those
Meetings in 1959 that John McCarthy presented to Morse his memo outlining the three
key changes (RPQ’s) that would make the IBM 709 suitable for timesharing.

I have lost track of who carried the rental of the initial IBM 7750 which controlled
the various terminals, but it may have been IBM. Similarly, the large IBM disc file that was

1 After publication of the first version of this document, Corby sent the editors (2011-06-24 email)
these notes relating to some uncertainty he sensed in our understanding of Professor Phil Morse’s
role in the management of the Computation Center.



22 Memories and views of CTSS

brought in for program and data storage may have been by IBM. A key reason for thinking
so is that the IBM liaison to the Computation Center at that time was Loren Bullock, and
I remember he tried very hard within IBM to persuade the upper management of the
importance and potential of the MIT timesharing work.

Marjorie Daggett2

Marge majored in math, taught for two years, and then spotted an opening in a group in
Building 20 doing calculations, differential equations, and so on for an engineering lab.

In the mid-1950s the Whirlwind computer was opened to the MIT Community.
Marge’s co-worker (another woman) was sent there for training, and then the co-worker
came back and taught Marge about coding for Whirlwind.

A Prof. Frazier had lots of calculations to do, and they decided it was appropriate
to do them on the card punch calculator that was part of the activity run by Prof. Frank
Verzuh. She and her co-worker coded this application and others, and it seemed clearly
faster and better than how they had been doing them with more manual equipment in
their lab. Marge and her co-worker were spotted by Frank Verzuh, and they were offered
jobs in approximately the summer of 1957 when he was staffing the computer center.
Early on they took a course in symbolic assembly language programming given by Corby.

There were four of them in the group, and they did a bit of everything: programming
for people, doing demonstrations, and consulting to people.

Frank Verzuh was involved in a project to compare the effectiveness of programming
in assembly language versus FORTRAN. Marge recoded equations from before, and it was
easier. One of her first assignments was to learn FORTRAN and then to code a program
in FORTRAN that a co-worker was coding is assembly language. The FORTRAN program
took a considerably shorter time and gave a clearer statement of the algorithms being
used.

Marge consulted to various MIT professors and research assistants who wanted to
use FORTRAN, including helping people understand error messages from FORTRAN. She
helped lots of people with lots of things because she was one of the first people doing
this work. For a short time she was the “FORTRAN expert” until others in the group
learned it.

John McCarthy was also around, in particularly looking at the compiler and sug-
gesting various beneficial subroutines, and Marge coded these for him. Working with
McCarthy helped her see a bigger picture of computing.

Some programs run in the computer center were quite large, and people were
thinking about run times, ways to speed things up, etc.

There was also a development systems group “upstairs,” which was working on an
assembly language operating system [or was it an operating system oriented to assembly
language programming?] which Marge called the MIT Operating System. Corby was there
as was Dean Arden who was looking into modifying for efficiency the assembly program,
SAP. Others who were upstairs included Sheldon Best and a couple of other people who
had come from the Whirlwind Project. Arnie Segal was also upstairs.

Marge’s group was downstairs and had 6 or 7 programmers who did consulting
for other computer users and who had learned the operating systems in order to fix

2 These notes are based on a 2011-03-04 telephone interview of Marge by David Walden. Walden
explains: I started by asking Marge my first question, “What is the background that got you to
MIT, to the 7094, and then as part of the CTSS project?” Marge began to answer and I never asked
another of my prepared questions — just an occasional follow-up question. I took hand-written
notes on the conversation and after the call typed up my notes as a more complete, third-person
narrative of what I understood Marge to have said. I sent the more complete narrative to Marge for
review. Marge sent me her corrected and updated version of the notes in an email of March 6. That
revision is included here.



Memories and views of CTSS 23

problems people ran into. The downstairs group was responsible for operations and
thus gained experience with all the standard systems and programs running at the Comp
Center.

At some point Frank Verzuh left, and there was a big reorganization with Corby
taking Verzuh’s position as deputy director of the Comp Center. By this time the other
people upstairs had left (e.g., to go to industry), and it was clear that symbolic assembly
language programming was not the wave of the future. With responsibility for the
entire Comp Center, Corby moved downstairs. This group became responsible for both
maintenance and eventually the time-sharing project.

Marge continued to learn things. At one point Dick Steinberg and she were went to
IBM’s “Inside FORTRAN” course. Modifying FORTRAN was not an easy possibility. After
that Marge was sent to Michigan for a short course on “Inside MAD.”

Marge and others were familiar with all the systems they were running, and Corby
starting thinking about time-sharing with them. Marge said that at the same time Herb
Teager and John McCarthy were talking about human-machine interaction with the goal
of making debugging easier.

Marge said that Corby certainly wrote all of the first paper on the experimental
system, and Corby certainly wrote a lot of code in the supervisor — all of the work on the
queues was his. At the beginning Corby and Marge were the only two working on it, and
they spent a lot of time conferring and hashing and re-hashing problems, etc.

Her early involvement was with interrupt handling, saving the state of the machine,
various commands (and what was a command and what was not), character handling,
and also crude methods for inputting and editing lines for the demos. She remembers
a lot of “back and forth” about what various states were: the distinction between dead
and dormant, waiting, etc. And then there was the whole area of queuing and what was
ready to run which was done by Corby. She worked in the “underpart of the supervisor.”
She remembers having to do testing at odd hours and sitting with a listing after 5pm
trying to figure out what went wrong. She also remembers it was a big exciting day when
it finally worked for two typewriters. There was still a lot to do, but conceptually it was
pretty much there — very exciting.

I told Marge that Bob Daley had told me that he came to work for Frank Verzuh
in a non-programming position, that she had spotted him, and invited him to join the
programming group; and I asked how that came about. Marge said the it was obvious
to all that Bob, whose job was keeping various pieces of equipment such as punch card
machines going (and whatever else he was doing for Frank Verzuh) was clearly a bright
and motivated person who was studying (and had already taught himself a tremendous
amount) and eager to learn, and he should be given a chance.

I asked Marge how she felt when working on CTSS, and she said that it seemed
like it might unfold into something big, and it was terribly interesting to work on in the
beginning. On the other hand, a lot had to change (particular in the hardware) to enable
time sharing. The system grew over the years, and then the evolution into Multics, and
the beginnings of Multics was very exciting.

Marge married in February 1962; and, after the birth of her child (for which she
took a six months leave — two months before and four after), she came back part time in
May 1963. After that she was no longer involved in mainstream development. She fixed
things, she worked on specific commands, etc.

At some point Marge went to Michigan for 3 or 4 days to take a course from Bruce
Arden, Bob Graham, and Bernie Galler on MAD. At MIT they had some big programs
that tested MAD’s capabilities. When there were problems, they tried to get help from
Michigan, but the Michigan people didn’t really have the time to help. So Marge learned a
lot of programs that used MAD, which could be called as a subroutine.

Marge mentioned R. J. Creasy (who died in 2005). Her memory is that Bob Creasy
had some highly responsible project that was part of developing the CTSS supervisor.



24 Memories and views of CTSS

I told her Bob Daley told me that Creasy had “gone downstairs” (in the Tech Square
building) to help IBM get into time sharing. Marge noted that Lynda Korn also went to
IBM.

Marge also mentioned Dan Roos who was one of the research assistants that came
from different departments, who she remembers working on F2PM — the FORTRAN 2
post-mortem software.

Marge shared an office at one point with J. R. (Dick) Steinberg. When the interval
timers came, she and Dick Steinberg talked about the necessary subroutine expansion for
time-sharing, and she coded it and later expanded it from the prototype Dick had written.
Dick was operations manager when Corby became deputy director, and the programming
staff worked on the operations staff and on time sharing.

Dick Orenstein was hired as a regular employee; he was not a research assistant,
and he also worked on the post mortem routines.

Marge added during her edit, “I also would like to say or probably add to what
others have said: how supportive and fair Corby was in all our work and how generous
in his credits. Some authors of papers, though not in computing, relegate the co-workers
to footnotes.”

Robert Daley3

Bob stated that his getting to MIT, the 7094 and CTSS was serendipity. He was bored silly
in mechanical engineering at Tufts and dropped out. He then went to night school to
learn to program accounting machines, found it very exciting and aced it. Programming
was entirely based on plug boards and timing was critical, based on which row of the
card was being read at the time. This turned out to be a big advantage in dealing with
I/O on the 704.

He saw an ad for the MIT Computer Center and was hired by Professor Frank Verzuh,
to take care of the SHARE library. He also did accounting for the IBM 704 system on a 407
tabulator downstairs. It seemed silly to not be doing the 704 accounting on the 704 itself,
and Bob taught himself to program to do that. There was an IBM guy (Dewey Manzer) in
the IBM liaison office, helping Bob learn 704 assembler language. Bob tried to talk to him
about how to do I/O. The IBM guy said I/O was too complex, and one should just use the
SHARE library subroutine calls. Bob took this as a challenge to learn all about I/O and to
become an I/O expert.

Marge Merwin (later Merwin-Daggett) was leading the programming team, saw what
Bob was doing, gave him a test which he passed, and he became a DSR [Division of
Sponsored Research] staff member doing programming.

An aside: Professor Frank Verzuh taught 6.251, and he had Bob grade student
assignments, e.g., of Bill Poduska.

In time Corby took over running the Computer Center and he had a vision of dividing
computer time among multiple users using a time-slicing algorithm. Corby began to talk
to Marge and Bob about this. (I asked Bob why he was one of the two people Corby was

3 These notes are based on a 2011-02-28 telephone interview of Bob Daley by David Walden.
Walden explains: I started by asking Bob my first question, “What is the background that got you
to MIT, to the 7094, and then as part of the three person initial CTSS design team of you, Corby
and Marjorie?” Bob began to answer and I never asked another of my prepared questions — just
an occasional follow-up question. I took hand-written notes on the conversation and after the call
typed up my notes as a more complete narrative of what I understood Bob to have said. I send the
more complete narrative to Bob for review, and he sent back his edits in an email of March 2. Then,
on 2011-05-31, Bob answered three clarifying questions, and the following is the final result.



Memories and views of CTSS 25

talking to about a time-sharing system design, and Bob noted that he was young and
energetic, but couldn’t say more than that. It sounds like Corby recognized some spark
in Bob.)

Bob says that Corby wrote the core of the time-sharing system himself, using three
tape drives to swap users out of memory and another three tape drives to hold user
data. User data could be added to the end of the user data tape. This 3-user system
demonstrated the basic principals of time sharing. It was demonstrated frequently,
according to Bob, and he can’t name a specific demonstration date.

Eventually Corby began to back off from the actual programming and Bob took over
the supervisor and Marge took over the rest. They also hired some more people. He
remembers Linda Korn and a Norwegian woman [Gunn Lytell according to Marge Daggett].
I asked if the additional people were full-time hires or students working part time, and
Bob thought some of each. Dick Orenstein was an early addition to Marge’s staff.

According to Bob, Corby had/has always been championing time sharing. He had a
vision of multiple users each with the belief that each user had total personal use of the
machine (but he noted there was an omission in that vision that he would get to later).
Briefly, the early vision (at least as Bob understood it) did not include the concepts of
data file sharing across users and the access controls that would need.

In time they got a disk drive. One day Corby gave Bob a document on a 1301 disk
from IBM and told him that they were getting one of these. There was no existing software
for the 1301. Corby had some ideas about how to use the 1301 but basically told Bob to
figure out how to use it as part of CTSS. Bob developed the first user file system (with a
backup capability) for a time-sharing system. Later he added a capability for incremental
backups, hierarchical directories, and access control (needed with the ability for users to
share data files).

Bob noted three major innovations involved in CTSS. [He noted in his round of
edits that there were probably more.] The first was having the disk drive resulting in
a file system for user data. The second innovation was the RPQ that resulted in IBM
providing a protection and dual core system. The supervisor could reside in core A
and a user program could reside in core B. If the user program did an I/O or other
protected operation, control was transferred to the supervisor in core A. The third
innovation was using the 7750 communications processor for dealing with a large number
of communications lines to time-sharing terminals.

The initial version of CTSS supported only 3 Flexowriter typewriter terminals. It was
later upgraded to using IBM 1014 terminals (this is what is being used in the John Fitch
video,4 where Bob is the guy in the corner operating the computer). Next they had IBM
1050 terminals. By the time they had a large number of terminals they were using the
IBM 2741. Both the 1050 and 2741 terminals required an RPQ to allow a “reverse break”
where the user spoke first to the computer rather than following the IBM assumption
that the computer always controlled user communication and the computer asked the
user if it wanted something from the user. In time CTSS would support more modern
terminals such as DEC displays, etc.

CTSS users used assembly language and MAD, and Fortran could be run in the
background.5

From the beginning, users wrote application programs, for instance, Jerry Saltzer’s
TYPSET and RUNOFF, which Jerry wrote to help him write his thesis but which became a
model for other word processing and typesetting systems.

Returning to the protection thread, if a user program did I/O, etc., the system

4 Corbató63b. 5 Tom Van Vleck explained in a 2011-02-28 email, “CTSS users could not use
FORTRAN in foreground. It was a hairy multipass compiler and would have required deep source
changes to make it work in CTSS. Not sure we had the source of this IBM program product, even
back in the good old days. By 1964 or so, there was a CTSS command called MADTRN which
pre-processed FORTRAN into MAD and compiled that.”



26 Memories and views of CTSS

trapped, and then the supervisor would attempt to simulate the I/O. Well behaved FMS
programs could run in the background.

When Bob went to Poughkeepsie to check the protection RPQ, R.J. Creasy went along.
Bob Creasy was Bob’s office mate. The idea of I/O emulation was a key idea to Bob Creasy,
and he went downstairs (from the 5th floor of the Tech Square building to the 4th floor
where IBM was), and the concept became CP67. (Bob also remembers that Arnie Miller
did the changes that turned the 65 into the 67.) Dick Bayless also went downstairs and
created CMS. The first version was CP40, implemented on a 360 model 40. The model
360 model 67 came later and CP40 became CP67 (later renamed to VM370).

As Bob understood it, Corby’s vision was a personal machine for each user, and they
originally implemented that; but Bob says that they did it too perfectly. They discovered
that users want to share files, and thus they needed to implement access control and Bob
did that for a second version of the file system. (Then Bob moved over to Multics where
he implemented the Multics file and virtual memory system. This was a big evolution,
since it combined the concept of data files and virtual memory. Multics had the first
industry implementation of data file mapping into a virtual address space.6)

The idea as the Multics project began to heat up was that the CTSS developers would
move to Multics over time leaving the Computer Center staff to run CTSS. However, the
transition was a gradual one and took perhaps 18 months.

Bob went on to talk about others, particular a succession of office mates of his, who
left CTSS and had impact on other time-sharing systems. Already noted above are the
people who “went downstairs” to create CP/CMS. Stan Dunten went to Dartmouth where
he was involved with Kurtz et al. Jerry Clancy went to Data General to do RDOS which
was CTSS like. Bill Poduska, who later taught 6.251, went to Prime where they did PRIMOS
which was CTSS like. Dick Orenstein, who had worked with Bob on the file system, went
to “ADP (or something like it).” Bob also notes that CMS “Script” is a clone of TYPSET.
Also, Tom Hastings left to go to DEC where CTSS concepts evolved into TOPS-10.

Bob himself did an editor called EDL on CTSS, which he reimplemented on Multics
as EDM. (Then, using the EDM architecture, he built qedx for Multics.) All of these
implementations were patterned Saltzer’s TYPSET “dual-file editing philosophy” as Bob
wanted to provide an environment for programmers that was as good as the TYPSET
environment was for writers.

While Bob was working on CTSS, he was excited about the project, but he did not
realized how seminal it would be.

I asked where had Marge had gone, and he said he thought she simply had gone off
[as was the custom in those days] to have a family.

Richard Mills8

Q: Please tell me a bit about how you got to MIT, then into computing at MIT, and then
involved with Project MAC and CTSS.

6 Tom Van Vleck has a high opinion of Bob Daley, saying:7 “Bob was the ‘chief engineer’ or
‘implementation architect’ for CTSS and then the initial development of Multics. He was the final
arbiter for what features were in and what were not, and the strategist for how things could
fit together. His good taste, his ability to focus on which issues were essential, and his flat-out
programming chops were invaluable. We could not have gotten Multics implemented without him.
8 Interview of Dick Mills by Dave Walden. Walden explains: I sent an email to Dick with some
questions, and he sent back his answers in a 2011-03-15 email. I sent some follow-up questions
to which he replied in a 2011-03-19 email. I merged the two sets of answers into a single set of
questions and answers and sent it to Dick for review. Dick did some revision of the merged version
and sent the final version back to me in a 2011-04-01 email.



Memories and views of CTSS 27

A: Not-so-quick summary of my MIT careers (plural):

September 1949. Arrived to start a five-year-plus-three-summers program lead-
ing to a BS and MS in Electrical Engineering. In 1951, switched to BS in EE plus
BS in Management on the same timetable. In 1953 met Bob Fano, Corbató, Doug
Ross, Jay Forrester, Phil Morse, many other computing earlybirds. Programmed
Whirlwind I to process data for my EE/Management thesis. Graduated June
1954; continued to pursue thesis topic using Whirlwind remotely — by snail-
mail; week or two turnaround time.

June 1954 to September 1958. A non-MIT period, except for continuing remote
use of Whirlwind (I was on a GE management training program, interrupted by
a period of active military duty as Air Force pilot).

September 1958 to June 1960. I returned to enter the MIT Sloan School. I was
during both grad-school years a research assistant in the MIT Computation
Center. I worked with or met Corbató, Merwin, Daley, Teager, Dennis, Licklider,
Saltzer, McCarthy, and others. For my masters-degree thesis I designed, wrote
and ran on the 704 a program to implement and then experiment with an
uncommon algorithm for solving linear-programming problems.

June 1960 to March 1963. I helped to start and grow a Route 128 entrepreneur-
ial consulting and contract-programming company. In early 1963 we took it
public; I sold my interest soon after.

March 1963. Bob Fano hired me to help him start Project MAC. Soon I was
named Assistant Director of the Project. My first assignment as MAC’s first
employee was to play a major role in planning and administering the 1963
Project MAC Summer Study that launched the Project. During the Study I met
many of the then leading lights in computing at the time — Wilkes, Samuel,
Schwartz, Amdahl, Engelbart, Sutherland, Fredkin, Minsky . . . on and on. Dur-
ing four years as the Project’s Assistant Director and business manager, I
was also involved in decisions on Project direction, strategy, Multics hard-
ware specification and acquisition, CTSS evolution, refinement, operation, and
communication-system integration. The latter, incidentally, was a major un-
dertaking, given the voice-optimized analog telecommunications plant that
existed in the United States, and the world, at the time.

September 1967. I was asked by MIT President Johnson to leave MAC and
assume the position of Director of Information Processing Services (DIPS),
reporting, alongside the five academic deans, to the Office of the President. My
charge was to rationalize and coordinate (de facto, direct) all computational
services and facilities on the campus. All campus computing facilities reported
directly to or were closely coordinated by the DIPS. In this role, with its ex-
officio faculty appointment, I was able to accomplish a major transformation
and rationalization of the management of computing resources on the MIT
campus.

December 1969. With my mission accomplished, and the CIO job at a major
international bank in view, I departed MIT for what was to be the last time. I
have looked back only once, very briefly.

Q: What was your role with CTSS?

A: Primarily, administration and operation, first as Assistant Director of Project MAC,
later as DIPS. I am not a good source on the pre-1963 days of CTSS, but I think that
by the time of my June 1960 graduation from Sloan, the concept existed and some
early experimentation by Herb Teager had taken place. When I came back to MIT in
March of 1963 to become Assistant Director of MAC, CTSS was fully, if sometimes
feebly and failingly, in full operation on the Comp Center’s highly modified 7094. The



28 Memories and views of CTSS

system soon became useable enough to support the Summer Study. At MAC I was the
Project’s administrative chief. I “owned,” operated, and resource-allocated the entire
plant — computer access and capacity, space; the works.

As to my contribution to core CTSS development, it was very small. Relatively late
in the development process, when the system had become quite stable, I took Corby’s
concept of a multi-level priority-queue scheduling algorithm and tweaked it to fit the
real-world need that emerged from our “computing utility” conception of time-shared
systems. Thus I played a leading role in transitioning CTSS from a computer-science
experiment to a multi-user computing-service facility.

Q: In taking “Corby’s concept of a multi-level priority-queue scheduling algorithm and
revised it to fit the real-world need that emerged from our ’computing-utility’ conception
of our system,” did you motivate and supervise this transition, or did you do coding
yourself, or both?

A: A really long answer is needed here, but let’s see if I can give you enough to meet
your need. Tom Van Vleck, by the way, is a heavy-hitter in exactly this area — he was an
invaluable resource involved in designing, implementing, and especially in running the
complex resource-allocation system that we created for “production” CTSS.

The shortest answer to your specific question is “all of the above.” I motivated,
supervised, and did a lot of the coding. As far as the core-CTSS code is concerned, I
created nothing new, but I did some tweaking of the existing scheduling and queue-
management code. One of the basic design concepts implemented in the system (due to
Corby) was that it must defend itself against overload. Illustration: as one tiny part of
carrying this concept into our approach to scheduling and resource management, I used
a dynamic doubling of the length of the “tick” — the length of time each user was allowed
to run between clock interrupts — in response to an indication of impending overload.
This of course had the effect of more or less halving interrupt-processing overhead. Was
I the first to do such a thing? I don’t know. I doubt it, but more important, I could not
possibly care less.

We (Who is “we”? Well, certainly “I”, but surely there were others involved. And
again, I make no claim of primacy, a subject in which I have zero interest.) Whatever.

Anyway, “we” created the “standby user” concept. We set a fixed number (which
increased as the system improved) as the nominal number of users who could be given
an acceptable level of service. But after that number had logged in, as long as the system
was providing acceptable responsiveness, we allowed additional users on — with the
caution that they were subject to, and they indeed suffered, the dread “automatic logout”
if things began to slow down. We thus implemented another basic concept: we chose to
give acceptable service to a smaller number of users rather than poor service to a larger
number.

External to core CTSS, Tom and I and others created a complex process, which
ran as a privileged CTSS user, that each night at midnight updated the time-used vs.
time-allotted accounts of registered users. We called this “turning the crank,” and Tom
was a principal authority in managing and operating this machinery — which a small
group of us, led by me, had designed and coded.

Anecdote: Corby once quipped to me that I was taking the “carburetor-designer
approach” to the modification of system scheduling — “we’ll drill a new hole right
here . . . why? Well, because it just feels right!” He was correct. I never based the work
we were doing upon a solid underpinning of analytical results; instead we sort of just
made it work — often by “drilling a hole here” because we thought it might help. Maurice
Wilkes never stopped chiding me for never publishing any of this, and he finally wrote
his own paper on the subject, which in part described some, but by no means all, of what
we did.9

9 See “Additional note” BY Tom Van Vleck on page 33.



Memories and views of CTSS 29

Q: My understanding is that having CTSS in existence helped with the creation of Project
MAC. If this is correct, please tell me about how you saw CTSS and Project MAC’s
relationship.

A: CTSS was first a demonstration of accessible computing — that the capabilities of a
large computer could be presented to a number of users much more nearly on the user’s
terms (as to time, place, and ease of access) than the then-traditional ritual presentation
of card decks, 24-hour turnaround, and massive bundles of paper from high-speed
printers. CTSS, in its latter manifestations, was a fully functional multi-user computer
service facility, accessed from distant terminals.

MAC was created to take the capability realized, demonstrated, and used “in produc-
tion” in the CTSS instance to a new level by defining a hardware platform that had been
designed to cater to the special needs of multiple access and to develop an operating
system built from the ground up to manage that hardware as a time-shared resource.
Time sharing on the 7094 was only made possible by standing the stock 7094 on its head
by means of fundamental hardware modifications — e.g., bolting on a second bank of
high-speed memory and creating an interrupt capability where none had existed.

For a significant span of time, CTSS ran on two independent copies of the enhanced-
7094 hardware that existed at MIT, one in the Comp Center (the “Blue Machine” in
local parlance) and the other at Project MAC (the “Red Machine”). The former was run
as a service facility, providing time-sharing service to campus users, most of whom
probably had no interest whatever in computers, but all of whom needed computing
service. The MAC machine was the central resource to MAC-based research and, for
a significant period, to the developers of the Multics system. (It would be wise to get
Corby’s endorsement, or correction, of the above. I fear that my recollection of the
detailed time line for the intertwined events of CTSS-MAC-Multics has become very foggy
over the years.)

Q: How did the system at Tech Square come about?

A: MAC was created, in part, to reduce to practice the capability of Multi-Access Com-
puting, and to explore the benefits thereof, including its possible role in what we called
Machine-Aided Cognition. CTSS demonstrated the former and was an early platform
for the latter. Our initial vision of the progression of the work of the Project was that
it would (1) continue to develop and to exploit the 7094-based CTSS platform while
(2) developing an improved time-shared operating system that would run on current-
technology hardware and (3) while collaborating with firms in the computer industry to
specify, implement and exploit new-technology hardware that would have been, with
MAC-developed insights, designed from the ground up to be time shared (instead of being
forced by ad hoc modifications to support, awkwardly, a time-sharing operating system).
As events rolled out, the Project was able to skip step two of that sequence, because
sooner than expected we found a platform — the GE 635 — that was close enough to what
we needed so that we could jump — with a significant amount of hardware-development
pain — to step three. All of that is background to the answer to your question: MAC
needed an instance of the then version of CTSS (1) to develop further, while at the same
time, (2) to provide users with the means to begin to learn by hands-on experimentation
what truly accessible computing meant in their various fields of endeavor. This need
was, of course, inconsistent with the (nominal) mission of the Comp Center, which was to
provide stable, dependable computer service to the campus. Therefore MAC needed to
implement its own instance of CTSS on what became the “Red Machine” in MAC quarters
in Technology Square.

Q: What was your role in making that happen?

A: I was directly responsible for all aspects of the build-out and the operation of the Tech
Square facility, which of course included the acquisition, installation, and operation of
the Red Machine.



30 Memories and views of CTSS

Q: Please tell me what you can about how the CTSS project was organized, where the staff
came from, how big was the staff, who was on the staff, how the project was managed,
etc.

A: Corby is your man here. Most of the early CTSS development happened during the time
I was either in the Air Force or working for GE. Of course, a lot of refinement continued
after my March 1963 return to MIT. It was done primarily using Comp Center, not Project
MAC, staff, though the line between the two was often pretty blurred. Except for briefly,
as indicated above, there really was only one development staff, albeit a growing and
evolving one. In internal-bookkeeping terms the developers were initially charged to other
than MAC accounts (initially, of course, there was no MAC), but whichever account paid
them, and regardless of where they sat, it was the same — growing and evolving — crew.
You should probably check that statement with Corby, but I think he will agree.

Q: Did changes to one of these systems migrate to the other?

A: Initially all concerned exerted considerable effort to keep the systems as close to
identical as possible. On some date between 1963 and my move to become Director of
Information Processing Services in 1967 — I don’t remember when, but Corby will — MIT
hired from the outside a new Associate Director of the Comp Center to replace Corby in
that position (MAC needed all of Corby — or better, two or three of him!). That individual,
and a cluster of students gathered around him, chose to encourage the Comp Center staff
to become less dependent upon the version of the system running on the Red Machine
and on its development and support staff. As I recall, even with their new independence,
the Comp Center staff actually made few — probably no significant — mods to core CTSS
on the Blue Machine. They fiddled with the scheduling algorithm and such, but not
much else. But even so, as a result (and in my personal opinion) the quality of Comp
Center service to the campus’ non-CS community declined materially during that era. The
new Comp Center Deputy Director departed MIT more or less simultaneously with my
assumption of the newly created DIPS role and, temporarily, of the position of Director
of the Comp Center.

Q: Can you tell me about the steps in the evolution of the system from an idea to a design,
to a prototype, to something demonstrable, to something operational.

A: By the time I returned to MIT to become MAC’s assistant director (March 1963), CTSS
on the Blue Machine was fully demonstrable, and by the start of the 1963 Summer Study
(in June), it had stabilized to the point at which it, with a few wobbles, did support
experimentation with time-shared computing by a stream of top-drawer practitioners,
each of whom spent up to six weeks as guests of the Study. Major refinements in CTSS
were still to come, such as enhanced access control, a totally new file system (which
defined to a great extent the file systems of today), and resource-management strategies.

Q: When you became Bob Fano’s deputy for Project MAC (i.e., Assistant Director of
MAC), did you sooner or later take on responsibility for the system in Building 26?
A: Yes, but later, not while I was at MAC. I acquired formal ownership of the Comp

Center (Building 26) organization and equipment in 1967, when I became Director of
Information Processing Services. As soon as the DIPS position was created, with me as
its first occupant, I immediately assigned to myself the additional position of Director of
the Computation Center. It was only later, after I had firmly (and sometimes painfully)
established the service-only, as distinct from CS-research, mission of the Comp Center,
that I hired Weston J. (“Wes”) Burner to replace me as Comp Center Director.

But Corby, and therefore MAC, and therefore I, had significant involvement with the
Comp Center even after we installed the Red Machine at MAC. Remember that the Red
Machine was MAC’s development system. The Blue Machine, even in 1963, was nominally
a campus service facility, although some interests in Building 26 continued to view it as



Memories and views of CTSS 31

a CS research facility, fiddling with the OS, etc., sometimes to the detriment of reliable
service to campus users who needed reliable computational service.

Q: In your first answer you said you were, “Asked by MIT President Johnson to leave MAC
and assume Dean-rank position of Director of Information Processing Services (DIPS),
reporting to the Office of the President, with the mission of rationalizing and coordinating
(de facto, directing) all computational services and facilities on the campus. All campus
computing facilities either reported directly to, or were closely coordinated by, the DIPS.
In this role, with its ex-officio faculty appointment, I was able to accomplish a major
transformation and rationalization of the management of computing resources at MIT.”
Were CTSS and Multics part of this?

A: By “CTSS” in the above, you must refer to the Red Machine at MAC, because CTSS
on the Blue Machine was a part of the Comp Center — the campus computer-service
facility — and perhaps more obviously my responsibility. But the short answer is still
yes, of course. MAC computers were campus computing facilities, so responsibility for
them was, de jure, part of my brief. However, as they were dedicated to supporting the
specific purpose and goals of Project MAC, and were explicitly excluded from the campus
computer-service plant, in my DIPS role I had little to do with them other than providing
such operating support as was needed. However, in my role as interested ex-Assistant
Director of Project MAC, I stayed close with the work of my colleagues there.

Q: In addition to its influence on Multics (or at least influencing Corby et al.) to want
to build a second time-sharing system, what influence do you see from CTSS to other
computer operating systems?

A: I have already mentioned the (final) CTSS file-system design. As far as I know, without
confirmatory research, the user-name/password method of user authentication was first
used by CTSS. In the hardware, the clock-trap interrupt, which ensured that the operating
system could always wrest control of the system from even the most pathologically
flawed of user programs, was crucial. (Actually, even after the extensive CTSS hardware
modifications, there were a rare few operations of the 7094 hardware that the clock
interrupt could not intercept. The AI Lab people found them all in short order, but
showed admirable good citizenship by only occasionally using them to crash the system.)

Q: Tell me about your attitude toward the project while it was happening, e.g., just
another programming job, something exciting that could change history, or something in
between?

A: Those in leading roles in the project, certainly including me, never doubted for a
moment that we were changing the world. Accessible computing, on the users’ terms?
A true computer utility, with computer power available at a wall socket? Multi-Access
Computing and Machine-Aided Cognition? Oh, we knew what we had set out to do.

Tom Van Vleck10

Q: Please tell me about how the CTSS project was organized, where the staff came from,
how big was the staff, who was on the staff, how it changed over time (e.g., as MIT
students joined the staff and left it) how the project was managed, etc. And, of course,
what was your role and how did it evolve?

A: I do not have first hand knowledge of the beginnings of the CTSS project, or of the
politics surrounding the acquisition and use of computers at MIT at the start of the 60s.

10 Interview of Tom Van Vleck by David Walden. Walden explains: I sent an email to Tom with
some questions, and he sent back his answers in a 2011-02-23 email. On 2011-07-01 Tom edited
the interview to eliminate overlap with Section 22.



32 Memories and views of CTSS

There was a committee on computation consisting of professors; there was skepticism
among other professors about the value of computers relative to their high cost. (When I
took a Numerical Analysis course, we had to use Marchant electomechanical calculators.)

I went to MIT as a freshman in the fall of 1961, so I missed out on the very beginnings
of timesharing. (As mentioned on my website, I had interest and experience in computing
when I came to MIT from a high school project: this was rare in those days.) I got a
part-time job in fall of 1963 working for Prof. Herb Teager at Project MAC, using the
brand new MAC CTSS.

Q: What do you know about the steps were in the system evolving from an idea to
something demonstrable — and whatever you know about how Daley and Daggett original
got involved in the project.

A: This happened before I joined the project. Bob Daley started out as a computer
operator and became a brilliant programmer and designer. Most of the CTSS file system
is his work as well as many other parts of CTSS.

Q: You mentioned Prof. Fano, Dick Mills, Jerry Saltzer, and Roger Roach. I know what I
have read in Bob Fano’s oral history and in Corby’s oral history something about Bob’s
connection to the project; however, beyond that I don’t know what his role was.

A: Fano was one of the leading EE Department professors. He wrote the book (Chu, Fano
& Adler) on circuit design. He bet his career on time sharing and became the first Director
of Project MAC. Whether this was because he saw it as a way to get research funding or
as a way to transform the world is a question you should ask him.

Q: I also know that Jerry Saltzer did TYPSET and RUNOFF and in time wrote lots of
documentation for the project.

A: Saltzer showed he had programming chops with TYPSET and RUNOFF on CTSS, but he
also made major intellectual contributions to computer science, solidifying the idea of
“process” and then establishing fundamental principles in the security area.

Q: I don’t know of Dick Mills (except having heard his name) or Roger Roach at all. What
were their roles in the project?

A: Dick Mills was an early contributor to CTSS. (I inherited a listing of CTSS Version
14 (tape swapping) with his handwritten notes on it, and donated it to the Computer
History Museum in Mountain View.) Mills had been a B-52 pilot, worked on Whirlwind,
and became Assistant Director of Project MAC. Before Multics was launched as a project,
Project MAC did the 1963 Summer Study which gave influential computer scientists from
all over a taste of timesharing on CTSS. There were many projects using CTSS scattered
around MIT and at other New England colleges and universities. Dick Mills dealt with
many different tasks as Assistant Director, dealing with ARPA, managing personnel, etc:
but one of the biggest jobs he did was to be the system administrator of CTSS. You could
make a case that he was the first “sysadmin” in the modern sense. He assigned user
account IDs and passwords; set up projects; designed, programmed and ran the usage
accounting; programmed changes to LOGIN and the supervisor; understood the arcane
interface to the IBM 7750; and did far more.

Roger Roach led the team that maintained CTSS at the MIT Computation Center, and
was the one who finally pushed the button to shut CTSS down for the last time in 1963.

Q: Tell me about your attitude toward the project, e.g., just another programming job,
something exciting that could change history, or something in between?

A: Most of these have been covered or are in my online stuff. Being part of a team led by
Corby was a particular pleasure.11

11 See page 13.



Memories and views of CTSS 33

Q: How did you feel when CTSS was shut down? Looking back, how do you think about
the CTSS project: the experience of working on it, it becoming an operational reality, and
what impact you think it had on computing?

A: When CTSS shut down, it was time for it to go: the hardware was becoming ancient
and flaky. But looking at what it could do, and what people did with it, shows that many
subsequent systems were less capable and vastly more wasteful. When the Windows NT
design came out in the mid 90s, it seemed to me to be a pretty nice version of CTSS . . .
with a graphic interface.

Additional note12

I forget when Prof. Maurice Wilkes visited Project MAC. Probably 1966.
It was at a time when CTSS was very overloaded. We had tried assembling the

system to support up to 50 users, but it was unusable. It seemed like about 30 was
as much as it could handle, depending of course on what these users were doing. Big
compilations might take hours, e.g. the EPL compilations for Multics modules.13

Complex rules were added to the CTSS login routine to decide who could log in.
These rules reserved some slots for different groups of users: so many for Multics
development, so many for the School of Science, etc.

I think Dick Mills was the primary inventor of the “load leveler,” which was a facility
that monitored the scheduler queue length and decided when the system was overloaded.
When the system was overloaded and had been overloaded for some period, the load
leveler would pick a user and initiate an automatic logout.

There were complex rules that influenced which user would be bumped: some users
were protected from bumping, e.g., the daemon (that is, the special user scanning the
disk and dumping modified files to tape).

There was a set of rules applied at LOGIN time to decide whether a user could be
logged in as “PROTECTED FROM PREEMPTION” if their load control group had not used
all its slots, or “SUBJECT TO PREEMPTION” if the system had not reached the maximum
number of users but this user’s group had all its slots used. A subject-to-preemption
user could be promoted to protected if other group users logged out. (The standby-login
stuff was my code, done under the direction of Dick Mills.)

The user chosen for preemption was the unprotected user who had been logged in
the longest. When a user was bumped, a “blast” message was typed on their terminal
giving them 3 minutes to save files and log out. People hated that. Then the user was
logged out and whatever they had running at the time was saved as a file LOGOUT SAVED,
which the user could RESUME when they next got logged in.

There was much tweaking of the system parameters to find the least-bad set of
values. Some folks raised the issue that warning users and giving them time to clean up
caused them to initiate a burst of demand in their last few minutes, running the load up
higher, causing more bumping to go on, and possibly leading to oscillation. Nobody knew
how to deal with this issue. I remember proposing that we write a DYNAMO simulation:
but it would have required values for a lot of simulation constants that we would have to
guess at or do a measurement study to determine.

Professor Wilkes heard about this controversy, and pointed out that this kind of
problem had an analytic solution. He wrote some difference equations for the load,
number of users, etc.. and then mapped them onto the continuous case differential
equations, and plotted the transform in the complex plane. Whaddaya know, the equation
system had a pole some distance from the origin, i.e. it was unstable, and the oscillation
effect was intrinsic, if any warning was given.

12 2011-03-30 email. 13 EPL was an early PL/I compiler that ran very slowly.



34 Memories and views of CTSS

I was enlightened: Real mathematics applied to operating systems. No need for
elaborate programming and parameter fudging.

This is described in Wilkes71.

Roger Roach14

Q: What is the background that got you to MIT, to the 7094, and then involved with CTSS,
and about your?

A: I came to MIT as a student in 1963. In my sophomore year, I got a student job
working on a project to use the computer to format a thesaurus of textile terms for the
Mechanical Engineering Department which migrated to an information retrieval project
called TIRP which utilized CTSS to access abstracts of textile papers with a very early
form of a relational database. We also used an IBM system called IBSYS to sort the data
for the database we were developing. I was lead programmer in the project and there
were two other students working with me. We were using more computer time than was
then allocated for projects so we made a deal with the Computer Center to maintain
CTSS in return for access to the spare time on the computer. The Computer Center was
converting to the IBM 360 and all of their programmers were working on that. I did
not work on the CTSS at MAC, but I talked to them when I need help understanding
an issue. I became the de facto administrator on the CC CTSS, a role that Tom had
performed before and who had moved to MAC to work on Multics. in 1967 I joined the
Computation Center as a full time programmer to maintain CTSS and later as head of
the system maintenance group on Multics. As leader in the system maintenance group
in the Computation Center I was also in charge of maintaining the CP67/CMS system
the CC installed for a project in Urban Planning. This group had between 3 and 4 other
programmers working with me to perform system maintenance functions on these three
systems. We did not do development, but took changes from the system programmers
and did integrated testing, prepared the releases and kept the system libraries organized.
For CTSS we did the normal maintenance functions including analyzing crashes, applying
fixes and some minor enhancements for projects using the system. We worked with a
group from the management school to utilize CTSS as a very primitive war gaming system
in which various teams use what is now called instant messaging to trade information
between themselves and form alliances to defeat other teams.

Q: Tell me what you can about how the CTSS project was organized and its organization
evolved over time.

A: I do not know how the early CTSS team was formed or how it was managed. They did
document what they were working on with notes. I captured the ones I could find on the
DVD15 I am sending you in the PSN (Programming Staff Notes) folder. That was before
my time.

Q: Tell me about the key people on the project during your time on the project.

A: To me the key people were Tom Van Vleck for administration and overall knowledge,
Noel Morris for file system and scheduler knowledge, and Stan Dunten for communica-
tions (e,g, the 7750). These were my go to people when I hit snags. Obviously Corby (F.̇J.
Corbató) was the master of all this, but I did not have any interaction with him until I
started working on Multics.

Q: Tell me about your attitude toward the CTSS project during your period of involvement:
just another job, something exciting that could change history, or something in between?

A: The ability to use a system like CTSS was extremely exciting for me. It became my

14 Interview of Roger Roach by David Walden. Walden explains: I sent an email to Roger with some
questions, and he sent back his answers in a 2011-02-27 email. 15 Roach11.



Memories and views of CTSS 35

“PC.” I think I was the first student to use CTSS to write his thesis. I also used CTSS to do
some bookkeeping for some of the outside projects I was working on. It was obviously
the way of the future and I was very glad to be in on it. This also applied to my interest
in Multics and CP/CMS (aka VM/370) — a forerunner of VMWare.

Q: After the system was operational, were further enhancements made over time?

A: My team made incremental changes. The most extensive were the modifications for
the gaming system to allow users to send “immediate” messages to other users and the
ability for referees to monitor and hold messages. We also added features to RUNOFF.
We created a set of mini-commands to be used in runcoms (set of commands in a file) to
provide dynamic data such as date and time for file names.

Q: There was a copy of CTSS at Project Mac. Were you also involved with that?

A: No, when I got involved, the MAC CTSS as being used mainly for Multics development.
For compatibility, we did take their releases and applied them to the CC CTSS, but they
were not interested in the changes we were doing unless we found a bug that would
affect their system in which case they took the change and applied it to their system.

Q: How long did you stay with the CTSS project, and what did you do next?

A: I was responsible for maintained CTSS until the final shutdown.16 I think Tom has a
picture of me on his web page taken on the final shutdown. I worked on Multics until
1988 when MIT finally discontinued it. I was manager of systems programming until
1985 when I became director of Operations and Systems which then became director of
IT Services until I “retired” in 2005. I did some consulting for a few years and then took
a job as director of IT for the Whitehead Institute of Biomedical Research (affiliated with
MIT but not strictly part of MIT) in 2007 where I am now.

Q: How did you feel when CTSS was shut down?

A: I felt sad although I was pretty involved in CP/CMS and Multics which by then I
considered the next evolution. I did save as much of CTSS as I could and that was used by
Dave Pitts recently in constructing an emulator for the 7094 and thus CTSS still lives!17

Q: Looking back, how do you think about the CTSS project: the experience of working on
it, and what impact you think it had on computing?

A: CTSS changed the way we deal with computers. Timesharing would have evolved
eventually, but CTSS was a very visible proof of concept. Without it, there would have
been no Multics and likely no UNIX which developed out of Multics, It might be a stretch,
but without timesharing to allow mortals to use computers, the idea of PC’s might have
been delayed much further.

Allan Scherr18

I was one of the original graduate students with Project MAC. My PhD research was
essentially to model the performance of time sharing systems. I created both detailed
simulation models as well as simple mathematical ones. So as to test the models, I also
took performance measurements of the CTSS system: number of users, response times,
service times, etc. When I got my degree in June, 1965, I went to work for IBM right in
the middle of what I called “the time sharing wars.” IBM was in competition with Multics
and General Electric for time sharing system business. IBM’s entries into the fray were

16 See page 13. 17 Pitts10. 18 Dave Walden explains: I solicited a paragraph from Allan regarding
his involvement with CTSS and its impact. He sent back in a 2011-03-06 email this description
of how CTSS was a part of his PhD research, from which he went on to a distinguished career in
industry.



36 Memories and views of CTSS

specialized systems that were incompatible variations on the System/360 line that IBM
was introducing. I joined IBM as probably the only person in the world who understood
the performance dynamics of time sharing systems.

In 1965, it was commonly thought that virtual storage (i.e., paging systems) were a
necessary aspect of time sharing. Since System/360 did not support virtual storage, it
was commonly thought that time sharing wouldn’t work. I wound up leading a task force
to come up with a general-purpose, System/360-based time sharing strategy. I showed
that a practical, general-purpose time sharing system did not require virtual storage,
and proposed what became the “Time Sharing Option” of OS/360. I became the design
manager for the project, and my career as an operating system designer and leader was
launched. Ironically, the TSO work established the feasibility of adding virtual storage to
OS/360. I later went on to lead the creation of the virtual storage version of the operating
system (MVS) which in turn is the basis for IBM’s main frame operating systems of today.

I was named an IBM Fellow in 1984 in recognition of my work on operating systems
and networking.

It is interesting to note that even today the time-sharing concepts apply to many of
the client-server systems being created.

Additional note19

There is an incident that I finally confessed to at the 25th anniversary of CTSS and Project
MAC..

My PhD research involved measuring, modeling, and simulating the performance of
the CTSS system. The performance simulations were very detailed and I had created a
simulation system based on MAD to run them. The actual scheduling program that was
the heart of the CTSS operating system was part of the simulator. In any case, I needed
many hours of computer time to run my simulations. Unfortunately, I had only been
allocated something like 4 hours of processing time on CTSS per semester. I exceeded
this time well before I had completed the simulations.

Because I had embedded measurement code into the CTSS operating system, I had
access to the listings of the system. I discovered that the cumulative time usage for each
account was loaded into the operating system every time the associated user’s core image
was swapped into memory. At the end of the time slice, the usage was updated and
swapped out. I simply added a XEC* (indirect execution) instruction to the performance
measurement code I had in the operating system so that I could indirectly execute an
STZ (store zero) instruction to zero out my usage any time I wanted to. So I would rack
up usage time until I got close to 4 hours and then zero it out and start all over.

This worked well until the spring of 1962. What happened was that someone on
the CTSS staff (I think Bob Daley) came to me and said that the space my measurement
programs used was needed and, since I was done measuring, they were going to remove
my programs from the operating system. At the same time, my privileges to modify the
operating system were revoked. By the way, the account number (“problem number” as
it was called) for system programming was M1416 as I recall.

Being desperate, I had to find a way to regain access to the operating system so I
could re-insert my STZ code. I finally found a way to do it. All of the passwords for the
system were stored in a file called UACCNT.SECRET under user M1416. There was a way to
request files to be printed offline by submitting a punched card with the account number
and file name. Late one Friday night, I submitted a request to print the password files
and very early Saturday morning went to the file cabinet where printouts were placed and
took the listing out of the M1416 folder. I could then continue my larceny of machine
time.

I did two things to spread the risk. First, I contacted J. C. R. Licklieder (the ARPA
administrator for Project MAC). Because he was interested in computer security, I tempted

19 2011-06-25 email.



Memories and views of CTSS 37

him by offering him a copy of all of the system’s passwords. After being granted immunity
I told him what I was doing and sent him the password files. I later learned that he had
used the passwords to log onto Fano’s account (and maybe others) and leave taunting
messages.

The second thing I did was to tell two other struggling PhD students how to get more
time on the system. One was Don Carroll (at the time an Assistant Professor in the Sloan
School) and Peter Denning. Both were doing simulations, Don of job shop scheduling and
Peter of disk based systems using the simulation software I had developed for my thesis.

As it turns out, one night Bob Daley noticed someone logging onto the system (every
time a logon occurred, the ID was printed on a line printer in the machine room) who he
knew was not there. He almost caught the person doing it (it was Don Carroll I think).
After some investigation, Bob figured out that the culprit had modified code that I had
left in the system (the purge of my code left one small vestige). He couldn’t figure out
why there was an XEC* being inserted, and I didn’t help him figure it out.

I finished my simulation work in May of 1965, completed my thesis, and left for IBM.
Later I heard that Don Carroll had been caught and called onto the carpet by Prof. Fano. I
ultimately had the opportunity to confess to Prof. Fano in person at a 25th anniversary
get together. He assured me that my PhD would not be revoked.

Peter Denning20

Q: When and how did you first hear about or come in touch with CTSS? Did its existence
influence you toward MIT for your graduate work?

A: I fell in love with electronic computers in high school and won three science fair
awards with homemade computers. In 1960 I entered Manhattan College EE in the hope
of studying computers, but they were traditional EE with no computer courses at the time.
In 1964 I chose MIT for graduate school because they were at the forefront of computing
technology. I had not heard of CTSS until I arrived and Jack Dennis, my advisor, gave me
many reading materials about the system. Even before I got to use CTSS, he sent me to
his lab, where the year before he had completed an experimental time-sharing system for
the PDP-1. That was my first experience with interactive computing. I loved it.

Q: Once at MIT, what was your involvement with CTSS? What were your first reactions?

A: I got my first CTSS account in 1964. I used CTSS for my masters project, a simulation
study of disk storage access times under different scheduling policies. CTSS was a
wonderful agglomeration of really useful tools, including the hierarchical file system,
ability to share files with other users, primitive graphics for 2-D screens, interactive text
editors, debugging tools, implementation of the language MAD (a derivative of Algol),
and Saltzer’s TYPSET and RUNOFF word-processing programs. I used all these tools to
program my simulator and report its results.

I learned that CTSS was not just an experimental time-sharing system; it was an
attempt to gain acceptance for time-sharing by showing that it could harmoniously co-
habit a traditional batch processing system. To me, a novice unfamiliar with the history
of batch processing, the co-habitation objective seemed to be a political issue that I did
not understand.

Q: When and why did you get interested in the technical aspects of CTSS?

A: Almost immediately. I studied the technical documents and talked with the established

20 Interview of Peter Denning by David Walden. Walden explains: I sent an email to Peter Denning
with some questions. He adjusted the questions to be more appropriate and sent back answers to
those questions in a 2011-03-10 email. In the email Peter also noted that he received an EE SM from
MIT in 1965 and a PhD in 1968, and was a member of Project Mac from 1964–68.



38 Memories and views of CTSS

people so that I could learn how CTSS did all its amazing things. I was intrigued by the
CPU time slicer and the multilevel scheduling queues. I thought the design of the user
memory was clever — a memory bound register defined the upper limit available for a
user’s job and an “onion skin” swapping strategy did not swap anything above that limit.
I thought it was ingenious to have two 32K-word (128K bytes) memory boxes, one for
user programs and data and the other for the supervisor (operating system). CTSS used
an interrupt to call a supervisor routine, which simultaneously transferred control to a
trusted location in the other memory and put the CPU into the supervisor-privilege state.

Q: What did you contribute to CTSS?

A: Al Scherr, who was finishing up his PhD during my first year at MIT, showed me how
to program skillfully in FAP (the assembly language for the 7094 process of CTSS), how
to use the debugger, how to program in MAD, and how to build a preprocessor that
extended MAD into a simulation language. I noticed that the CTSS scheduler and swapper
strongly favored small programs with short running times, and that the input-output
(IO) library, borrowed verbatim from Fortran, made CTSS programs too long for optimal
treatment by the scheduler. I wrote a bare-bones IO library for MAD users, which I called
MADIO. MADIO cut my program sizes by 80 percent and got super-fast response times.
It became popular in the CTSS community.

Q: How did what you learned about the behavior of CTSS impact your thesis work?

A: Jack Dennis saw my interest in performance analysis and encouraged me because
we needed to learn how to design time-sharing systems for predictable throughput and
response time. I vividly remember Corbató’s claim in a technical paper that the multilevel
scheduling queue not only gave fast response to the shortest jobs, but it kept the CPU
utilization at 50 percent or more by starting jobs at a level of the queue where the time
slice was longer than the swapping time. I wanted to know how to guarantee processor
efficiency when swapping would be a standard part of computing systems. My PhD thesis
was a quest for an answer to that question.

Al Scherr had discovered that the Machine Repairman model from queueing theory
accurately predicted throughput and response time of CTSS. It amazed me that such a
simple model worked for such a complex system. System administrators put his model
to good use because it told them how many users they could allow to be logged in while
maintaining response time under 3 sec. Scherr showed me how to use some of the same
modeling techniques in my masters thesis. They became a central part of my PhD thesis.

Q: Did you make any recommendations for improvements to CTSS, or was the develop-
ment focused on Multics by that time?

A: As noted, my direct contributions to CTSS itself were small. The Multics design was
occupying everyone’s attention by 1965. Multics had some pretty serious design issues
in memory management, which entered the virgin territory of combining virtual memory
with multiprogramming. Early reports from research projects around the world indi-
cated an unexpected and devastating problem called thrashing, the sudden performance
collapse of the system when multiprogramming level got too high. Understanding and
solving thrashing was the holy grail of my PhD thesis.

Q: Once you left MIT and were teaching and writing about computer systems, did you
use CTSS as an example? If so, how?

A: CTSS was always a reference example for me. Its design was extremely efficient,
parsimonious, and predictable. I never understood why operating system kernels had
to be large when I knew from my own experience that one of the first kernels providing
the functions was small. I wrote a lot about how to keep an OS design simple and kernel
small.

I was fascinated with the design of the user interface, then called the CTSS command
language. Someone had extended the command language with a macro facility that



Memories and views of CTSS 39

allowed users to write scripts of commands. The experience from that led to the Multics
shell, which was an extraordinarily simple, highly efficient command interpreter. I found
later that writing a simple shell was a marvelous project for students of operating systems
classes because it helped them appreciate the power of the time-sharing interface.

Q: To what extent to you think CTSS influenced later time-sharing and other computer
systems (or at least made developers of other systems more willing to understand their
development efforts)?

A: CTSS had a great deal of influence. It showed that the design of a computer system
could follow a small set of clear principles. The CTSS designers talked frequently with
their counterparts in other time-sharing research projects, and incorporated the best
ideas known at the time. CTSS passed its learning to Multics, which influenced many
later systems. CTSS is like a centipede, with hundreds of footprints in many operating
systems over the years down to the present day.

Q: Thank you for taking the time to answer questions about CTSS.

David Alan Grier21

CTSS: The balance of hardware and software

In the history of computer science, the work on CTSS represents one of those points where
researchers began to realize that the nature of their field was starting to shift. Throughout
the 1950s, most computer researchers devoted themselves to problems of hardware:
faster switches, memories that took less space, more efficient architectures. While many
researchers looked to make computers more accessible, they rarely articulated the idea
that software and hardware might have an equal role in computer society. The work on
CTSS showed that software had an equal place with hardware and that software might
ultimately be the key component of any computing system.

Much software research in the 1950s were was intended to make computers more
accessible. The major languages of the time, Fortran, LISP, ALGOL and COBOL, were all
presented as tools that would relieve programmers from the details of programming.
Even some preliminary research on timesharing was done to make more efficient use of
computing hardware and hence make computers accessible to more people. The prime
goal of time-sharing research, explained the IBM STRETCH research team, “is to allow
more of the component units of a computer system to be kept in productive use more of
the time.”22

Most researchers knew that time-sharing programs would be complex systems
and they attempted to control that complexity by developing time sharing on top of
existing hardware. In common with most researchers of the time, the CTSS system, the
project leader, Fernando Corbató acknowledged that computer hardware would have
to be adapted for time-sharing applications. “There are several problems which can be
solved by careful hardware design,” he wrote. However, he argued that there were “also
a large number of intricate system programs which must be written before one has an
adequate time-sharing system.”

In developing the CTSS system, Corbató went one step beyond his peers and argued
that software was no longer a secondary part of computer development, but was the
crucial element of computer science. “An important aspect of any future time-shared

21 David Walden explains: I sent David Grier a request for a paragraph about his view of the impact
of CTSS on computing history. He sent back a page in a 2011-02-23 email, which was finalized in
an email of 2011-03-14. 22 Codd59.



40 Memories and views of CTSS

computer is that until the system programming is completed, ” he concluded, “the
computer is completely worthless.”23

CTSS did not mark sudden change in computer operation. Long after work on
CTSS stopped, programmers were able to work on the native hardware without dealing
with an intervening layer of software. However, CTSS would mark the point when
researchers recognized the limitations to such an approach. The future of general
purpose computation would lie not only in systems that combined both hardware and
software elements. In these systems, the hardware would be of limited use, if not
“completely worthless” unless the system program was present and operating.

23 Corbartó62.



5. Also from the MIT/Cambridge environment

In the years following the birth of CTSS until time-sharing was replaced by the per-
sonal computer, the MIT/Cambridge environment was a hotbed of time-sharing system
development.

At MIT Prof. Jack Dennis led the development of a time-sharing system running on
a PDP-1 donated to MIT in 1961 by Digital Electronics Corporation. The time-sharing
system became operational in May 1963.1

MIT’s Multics (Multiplexed Information and Computing Service) system was in a
very real sense an outgrowth of CTSS as the developers of CTSS, again led by Fernando
Corbató, began thinking in 19622 about what we today would call a “next generation”
system, and actual development work began in 1965. The actual development project
initially was a joint effort among MIT, Bell Telephone Laboratories, and General Electric
(Multics was based on a GE-645 computer). The system was operational by 1968–69 and
over the years approximately 65 systems were deployed by Honeywell which took over
GE’s computer business (and, in turn, Bull which later took over Honeywell’s computer
business).3

In 1969 the Bell Laboratories left the project, and some of the Lab’s people who
had been involved with Multics went on to develop Unix, no doubt at least somewhat
influenced by their Multics experience.4

In the late 1960s, researchers at the MIT AI Laboratory, eschewing Multics, built
their own time-sharing system known as ITS (Incompatible Time-sharing System, playing
with the CTSS name). ITS was based on a DEC PDP-6, and many innovative applications
were developed one it. Later ITS migrated to a PDP-10.

Across Cambridge at Bolt Beranek and Newman Inc., J. C. R. Licklider was hired by
Leo Beranek to pursue Licklider’s vision of making computing personal. Licklider in
turn hired Ed Fredkin, who hired John McCarthy and Marvin Minsky as consultants (the
same John McCarthy who had pushed time-sharing at MIT and thus provided some of
the impetus for creating CTSS). They set out to build a time-sharing system on a PDP-1b
computer (the first PDP-1 sold by DEC), and an initial demonstration was done circa
mid-1962. Shelly Boilen and Bill Mann got the system really working by the end of 1962.5

There was a good bit of communication between Ed Fredkin and Jack Dennis as their
respective PDP-1 time-sharing systems were developed.

Based on its work with that initial time-sharing system, BBN undertook an NIH
contract to deploy time-sharing in Massachusetts General Hospital, based on the PDP-1d
system from DEC. A second time-sharing system was implemented (called Exec II) but
never worked reliably, and then a third system was implemented (Exec III) which worked
reliably for many years at BBN in support of Mass General (the original ARPANET IMP
software was developed on this machine).

The work with the “hospital system” spawned three follow-on projects: a time-
sharing joint venture between BBN and GE called Medinet, which did not succeed as a
business; BBN’s own time sharing bureau called Telcomp, which was quite successful;

1 Ackerman67 and Dennis66. 2 Hauben97. 3 Multics was described initially in a set of six
papers presented at the 1965 Fall Joint Computer Conference: Corbató65, Glaser65, Vyssotsky65,
Daley65, Ossanna65, and David65. The papers explained what was intended which in some cases
was later revised in light of experience.. 4 Ritchie79. 5 McCarthy63.



42 Also from the MIT/Cambridge environment

and a time-sharing spinoff of Mass General called Meditech (which continues to operate
in the medical information technology field to this day).

There is an important distinction between time-sharing as implemented on big ma-
chine such as the 7094, big 360 machines, and DEC 6 and 10 machines and time-sharing
implemented on little machines such as the PDP-1. Ed Fredkin and Jack Dennis were
making an important contribution by showing the time-sharing could be implemented
on such a small machine. Of course, ultimately this lesson was made manifest by the
creation of Unix on a PDP-11.

Meanwhile, IBM began development in Cambridge of a 360-based time-sharing
system, influenced by CTSS and involved some people who had been involved with CTSS,
that came to be known as CP/CMS.6 The first installation of this system was on a 360/67
at MIT Lincoln Laboratory. The MIT Urban Systems Laboratory obtained funding that
supported the installation of an IBM 360/67, running the CP/CMS time-sharing system,
in 1968.

Returning to BBN, when its original PDP-1 systems were growing old and tired,
BBN bought an SDS-940 running the time-sharing system developed at UC Berkeley to
which BBN made some additions. Then BBN developed the TENEX system, adding a
BBN developed paging hardware to a DEC PDP-10.7 This became a popular time-sharing
system in the early days of the ARPANET, and eventually was licensed to DEC where it
became TOPS-20. The TENEX developers were very much aware of the Multics design as
they designed a virtual memory system.

The connection between MIT, BBN, and DEC is notable. The founders of DEC had
come from MIT’s Whirlwind project. BBN took delivery on the first PDP-1 sold by DEC,
and DEC’s PDP-1 designer, Ben Gurley (another MIT computer person) made changes to
the system to support time-sharing (which both Ed Fredkin and Jack Dennis needed for
their PDP-1 time-sharing work). Various of the MIT and BBN PDP-1 people eventually
worked at DEC as did some of MIT’s CTSS people.

In this era, time-sharing bureaus were popping up all over the world, including in
the area around MIT and Cambridge. We already mentioned BBN’s Telcomp System. Some
of the people involved with the CP/CMS system at Lincoln later started a time-sharing
bureau, Interactive Data Corporation, in Waltham, MA. Another time-sharing bureau
based on CP/CMS was National CSS (in Connecticut) which also had staff members from
MIT. Lou Clapp who had been part of the MIT community started Dial Data in Watertown,
MA (later acquired by Tymshare). Undoubtedly there were others.

Naturally, time-sharing was also happening elsewhere in the country and the world
(for example, the Dartmouth Time Sharing System and its descendant GE Timesharing
(Mark I, Mark II, Mark III). Time sharing was a development for which computer technology
and economics were ripe. We make no claim that all of this evolved out of what happened
first at MIT and around Cambridge (although TYMSHARE, for instance, employed Norm
Hardy who had left IBM’s Cambridge Scientific Center and also employed other folks from
MIT). However, we also speculate that the various people who were around MIT and CTSS
at various times, for instance during the Summer Study of 1963 (page 27), maintained
contact with what was going on with CTSS after they returned to their own organizations.

There can be no doubt, however, that McCarthy’s original idea for time-sharing and
the Corbató-led substantive, solid, early implementation of time sharing in CTSS at MIT
were important stimuli for the era in computing that continues to this day — the era
where users themselves have direct contact with a computer, telling the computer what
they want it to do from moment to moment.

6 Varian91. 7 Murphy11.



Bibliography

Ackerman67. Ackerman, W. B., and W. W. Plummer. An implementation of a multiprocess-
ing computer system, Proceedings of the ACM Symposium on Operating System Princi-
ples, Gatlinsburg, TN, October 1–4, 1967.

Bourne03. Bourne, Charles P., and Trudi Bellardo Hahn. A history of online information
services, 1963-1976, MIT Press, Cambridge, MA, 2003, pp. 41–48, available online at
http://books.google.com/books

Brandel99. Brandel Mary. 1961 — Learning to share, Computerworld, June 29, 1999,
http://www.cnn.com/TECH/computing/9906/29/1961.idg/index.html

Burke98. Burke, Colin. A rough road to the information highway — Project INTREX: A
view from the CLR archives, in Bourne03.

Chiou01. Chiou, Stefanie, Craig Music, Kara Sprague, and Rebekah Wahba. A Mar-
riage of Convenience: The Founding of the MIT Artificial Intelligence Laboratory,
rough draft of project report for MIT course 6.933J/STS.420J (The Structure of Engi-
neering Revolutions), December 5, 2001, http://www.scribd.com/doc/33123208/
MIT-AI-Lab-History

Chuu01. Chuu, Chian, Michael Lei, Chiyu Liang, and Alida Tei. The Student Information
Processing Board: the social and technical impact of an MIT student group, prepared
for MIT course 6.933, Structure of Engineering Revolutions, December 14, 2001, http:
//web.mit.edu/6.933/www/Fall2001/SIPB.pdf; this report also includes a section
on CTSS.

Codd59. Codd, E. F., E. S. Lowry, E. McDonough, C. A. Scalzi, Multiprogramming STRETCH:
feasibility considerations, Communications of the ACM, vol. 2 no. 11, November 1959,
pp. 13–17.

Corbató62. Corbató, F., M. Merwin-Daggett, and R. Daley. An Experimental Time-Sharing
System, Proceedings of the Spring Joint Computer Conference, vol. 21, 1962, pp. 335–
344, http://larch-www.lcs.mit.edu:8001/~corbato/sjcc62/

Corbató63a. Corbató, F. J., M. M. Daggett, R. C. Daley, R. J. Creasy, J. D. Hellwig, R. H.
Orenstein, and L. K. Korn. The Compatible Time-Sharing System: A Programmer’s
Guide, The MIT Press, Cambridge, MA, 1963.

Corbató63b. A TV interview of Fernando Corbató explaining about time-sharing, inter-
viewed by John Fitch for the Science Reporter program on WGBH-TV, recorded on May
9, 1963, shown on May 16, 1963,
http://www.youtube.com/watch?v=Q07PhW5sCEk&feature=related

Corbató63c. Corbatȯ, F. J., J. W. Poduska, and J. H. Saltzer. Advanced Computer Program-
ming: A Case Study of a Classroom Assembly Program, MIT Press, Cambridge, MA,
1963.

Corbató65. Corbató, F. J., and V. A. Vyssotsky. Introduction and overview of the Multics
system, Proceedings of the 1965 Fall Joint Computer Conference, pp. 185–196.

Corbató89. An interview of Fernando Corbató, conducted by Arthur L. Norberg on 18
April 1989 and 14 November 1990, Charles Babbage Institute call number OH 162,
http://www.cbi.umn.edu/oh/pdf.phtml?id=92



44 Bibliography

Corbató91. Corbató, F. J. On building systems that will fail, Turing Award Lecture,
March 5, 1991, http://larch-www.lcs.mit.edu:8001/~corbato/turing91/

Corbató92. Corbató, Fernando. Excerpts from Corbató63a, IEEE Annals of the History of
Computing, vol. 14 no. 1, 1992, pp. 31–32.

Corbató06. Oral History of Fernando Corbató conducted by Steven Webber on February
1, 2006, Computer History Museum reference number X3438.2006,
http://archive.computerhistory.org/resources/access/text/Oral_History/
102658041.05.01.acc.pdf

Creasy81. Creasy, R. J. The Origin of the VM/370 Time-sharing System, IBM Journal of
Research and Development, vol. 25 no. 5, September 1981, pp. 483–490; this article de-
scribes the roots of CP/CMS in CTSS: http://pages.cs.wisc.edu/~stjones/proj/
vm_reading/ibmrd2505M.pdf

Crisman65. Crisman, P. A. The Compatible Time-Sharing System: A Programmer’s Guide,
second edition, The MIT Press, Cambridge, MA, 1965; the following URL is to a
version updated through 1969: http://www.bitsavers.org/pdf/mit/ctss/CTSS_
ProgrammersGuide_Dec69.pdf

Daley65. Daley, R. C., and P. G. Neumann. A general-purpose file system for secondary
storage, Proceedings of the 1965 Fall Joint Computer Conference, pp. 212–230.

David65. David, E. E., Jr. and R. M. Fano. Some thoughts about the social implications
of accessible computing, Proceedings of the 1965 Fall Joint Computer Conference,
pp. 243–248.

DeMarco99. De Marco, Tom, and Timothy Lister. Peopleware: Productive Projects and
Teams, second edition, Dorset House Publishing, Inc., New York, 1999.

Dennis66. Dennis, J. and E. Van Horn. Programming semantics for multiprogrammed
computations, Communications of the ACM, vol. 9 no. 3, March 1966, pp. 143–155.

Fano64a. Fano, Robert. The MAC system: a progress report (describes the usage of
CTSS with examples), MAC-TR-12, Project MAC, MIT, Cambridge, MA, October 9, 1964,
http://www.bitsavers.org/pdf/mit/lcs/tr/MIT-LCS-TR-012.pdf

Fano64b. Fano, Robert. Video of Robert Fano explaining scientific computing, 1964,
http://www.youtube.com/watch?v=sjnmcKVnLi0

Fano66. Fano, R. M., and F. J. Corbató. The time-sharing of computers, Scientific American,
September 1966, pp. 128–140.

Fano79. Fano, Robert M. Project MAC, in Encyclopedia of Science and Technology, edited
by Jack Belzer, Albert G. Holzman, and Allen Kent, vol. 12, pp. 339–360, http://
simson.net/ref/lcs_35/Fano_On_the_social_role_of_computer_communication_
systems.pdf

Francoeur02. Francoeur, Eric, and Cyrus Levinthal. The Kluge and the origins of inter-
active molecular graphics, Endeavour, vol. 26 no. 4, 2002, pp. 127–131, http://www.
cgl.ucsf.edu/home/tef/pubs/EndeavourVol26Issue4Pgs127-131.pdf

Garfinkel99. Garfinkel, Simson L. Architects of the Information Society: Thirty-Five years
of the Laboratory for Computer Science at MIT, MIT Press, Cambridge, MA, 1999.

Glaser65. Glaser, E. L., J. F. Couleur, and G. A. Oliver. System design of a computer for
time-sharing applications, Proceedings of the 1965 Fall Joint Computer Conference,
pp. 197–202.

Hauben97. Hauben, Michael, and Ronda Hauben. Netizens: On the History and Impact
of Usenet and the Internet, Wiley-IEEE Computer Society Press, 1997. See also http:
//www.columbia.edu/~hauben/netbook/

Lee92a. Lee, J. A. N. About this issue, IEEE Annals of the History of Computing, vol. 14
no. 1, 1992, pp. 3–4.

Lee92b. Lee, J. A. N. Time-sharing at MIT: Introduction, IEEE Annals of the History of
Computing, vol. 14 no. 1, 1992, pp. 13–15.



Bibliography 45

Lee92c. Lee, J. A. N. Claims to the term “time-sharing,” IEEE Annals of the History of
Computing, vol. 14 no. 1, 1992, pp. 16–17.

Licklider60. Licklider, J. C. R. Man-Computer Symbiosis, , IRE Transactions on Human
Factors in Electronics, volume HFE-1, pages 4Ű-11, March 1960, on-line starting on
page 7 at http://memex.org/licklider.pdf

Licklider92. Licklider, J. C. R. Excerpts from Licklider60, IEEE Annals of the History of
Computing, vol. 14 no. 1, 1992, p. 24.

MAD62. A User’s Reference Manual for the Michigan Algorithm Decoder (MAD) for the IBM
7090, Digital Computer Laboratory, Graduate College, University of Illinois, June 20,
1962.

MAD66. The Michigan Algorithm Decoder (The MAD Manual), revised edition, 1966.

McCarthy63. McCarthy, J., S. Boilen, E. Fredkin, and J. C. R. Licklider. A time-sharing
debugging system for a small computer, AFIPS 1963 Proceedings of the Spring Joint
Computer Conference, ACM New York, 1963.

McCarthy83. McCarthy, John. Reminiscences on the history of time sharing, 1983, http:
//www-formal.stanford.edu/jmc/history/timesharing/timesharing.html

McCarthy89. McCarthy, John. An interview of John McCarthy, conducted by William
Aspray on 2 March 1989, Charles Babbage Institute call number OH 156, http://www.
cbi.umn.edu/oh/pdf.phtml?id=192

McCarthy92a. McCarthy, John. Reproduction of McCarthy83, IEEE Annals of the History
of Computing, vol. 14 no. 1, 1992, pp. 19–24

McCarthy92b. McCarthy, John. John McCarthy’s 1959 memorandum, IEEE Annals of the
History of Computing, vol. 14 no. 1, 1992, pp. 20–23.

McCarthy92c. McCarthy, John. Minsky and Teager. IEEE Annals of the History of Com-
puting, vol. 14 no. 1, 1992, pp. 28–29.

MIT92a. Special issue on time-sharing at MIT, IEEE Annals of the History of Computing,
vol. 14 no. 1, 1992, containing Lee92a, Shriver92, MIT92b, Lee92b, Lee92c, MIT92c,
McCarthy92a, McCarthy92b, Licklider92, Teager92, McCarthy92c, MIT92d, Corbató92,
Rosin92, and MIT92e.

MIT92b. Biographies of participants and authors, IEEE Annals of the History of Computing,
vol. 14 no. 1, 1992, pp. 10–12.

MIT92c. The beginnings at MIT, IEEE Annals of the History of Computing, vol. 14 no. 1,
1992, pp. 18–30, containing an introduction without a listed author (pp. 18–19) and
McCarthy92a, McCarthy92b, Licklider92, Teager92, Minsky92, and MIT92c.

MIT92d. Long Range Computation Study Group’s recommendation for a time-sharing
system, IEEE Annals of the History of Computing, vol. 14 no. 1, 1992, pp. 28–30.

MIT92e. References and Bibliography. IEEE Annals of the History of Computing, vol. 14
no. 1, 1992, pp. 52–54.

MIT92f. Special issue on MIT’s Project MAC, IEEE Annals of the History of Computing,
vol. 14 no. 2, 1992. This special issue was edited by J. A. N. Lee with articles and
interviews by the same people who participated in MIT92a, and others. There is some
mention of CTSS in this special issue which has the following introductory note by Lee:
“The story of Project MAC is a continuum from that of CTSS, marking the transfer of an
experimental system into the practical academic field and thence into the commercial
field. Two men were key to this recognition of the value of the work by Corbató et
al. — Joseph C.R. Licklider and Robert M. Fano.” The two special issues both resulted
from involvement of John Lee and Robert Rosin in a celebration at MIT, in the fall of
1988, of the 25th anniversary of the Laboratory for Computer Science, the then name
of Project MAC.



46 Bibliography

Morris11. Morris, Errol. Did my brother invent e-mail with Tom Van Vleck?, a five-part
blog series, New York Times website, June 20–24, 2011, http://opinionator.blogs.
nytimes.com/tag/tom-van-vleck/

Murphy11. Murphy, Daniel. TECO, TENEX, and TOPS-20 Papers, a website, http://
tenex.opost.com/

Nance96. Nance, Richard E. A history of discrete event simulation programming lan-
guages, in History of Programming Languages — II, edited by Thomas J. Bergin and
Richard G. Gibson, Addison-Wesley, Reading, MA, 1996, pp. 367–427.

Ossanna65. Ossanna, J. F., L. Mikus, and S. D. Dunten. Communications and input-output
switching in a multiplexed computing system, Proceedings of the 1965 Fall Joint
Computer Conference, pp. 231–242.

Pierce03. Paul Pierce’s collection of actual computers, http://www.piercefuller.com/
collect/main.html

Pierce04. Paul Pierce’s collection of source code for CTSS from about 1972, http://www.
piercefuller.com/library/ctss.html?id=ctss

Pitts10. Pitts, Dave. A version of CTSS created by Dave Pitts running on a 7094 sim-
ulator written by Paul Pierce (Pierce03, Pierce04), http://www.cozx.com/~dpitts/
ibm7090.html

Pouzin00. Pouzin, Louis. The origin of the shell, November 27, 2000, http://www.
multicians.org/shell.html

Richardson81. Richardson, George P., and Alexander L. Pugh III. Introduction to System
Dynamics Modeling with Dynamo, Pegasus Communications, Cambridge, MA, 1981.

Ritchie79. Ritchie, D. M. UNIX Time-Sharing System: A Retrospective, Bell System Techni-
cal Journal, vol. 57 no. 6, October 1978, pp. 1947–1969.

Ritchie84. Ritchie, Dennis. The evolution of the UNIX time-sharing system, Bell System
Technical Journal 63, No. 6, Part 2, October 1984, pp. 1577–93. See also http://cm.
bell-labs.com/cm/cs/who/dmr/hist.html

Roach11. Roach, Roger. One-time CTSS system administrator Roger Roach has a DVD
with scans of a large collection of CTSS documentation, listing, correspondence, etc.

Rosin92. Rosin, Robert, and J. A. N. Lee interview of Fernando J. Corbató, Allan L. Scherr,
Douglas T. Ross, and Martin Greenberger. IEEE Annals of the History of Computing,
vol. 14 no. 1, 1992, pp. 33–51.

Saltzer64. TYPSET and RUNOFF, memorandum editor and type-out commands, M.I.T.
Computation Center Memorandum CC-244 and M.I.T. Project MAC Memorandum MAC-
M-193, November 6, 1964, http://mit.edu/Saltzer/www/publications/CC-244.
html

Saltzer65. Saltzer, J. H. CTSS Technical Notes, MAC-TR-16, Project MAC, MIT, Cambridge,
MA, March 15, 1965,
http://www.bitsavers.org/pdf/mit/lcs/tr/MIT-LCS-TR-016.pdf

Saltzer66. Saltzer, J. H. Manuscript typing and editing, from Crisman65, section AH.9.01,
December 1966 revision, http://mit.edu/Saltzer/www/publications/AH.9.01.
html

Shriver92. Shriver, Bruce D., and Merrill Buckley. Welcome messages from the IEEE
Computer Society and IEEE presidents, IEEE Annals of the History of Computing, vol. 14
no. 1, 1992, p. 5.

Teager92. Teager, H. Teager’s recommendation for an IBM 7030, IEEE Annals of the
History of Computing, vol. 14 no. 1, 1992, pp. 24–27.



Bibliography 47

Thornhill68. Thornhill, D. E., R. H. Stoz, T. T. Ross, and J. E. Ward. An Integrated Hardware-
Software System for Computer Graphics in Time Sharing, Report Nos. ESL=R-356
and MAC-TR-56, MIT, Cambridge, MA, December 1968, http://www.bitsavers.org/
pdf/mit/lcs/tr/MIT-LCS-TR-056.pdf

Tordo10. Tordo, Emily. Guide to the Records of the Massachusetts Institute of Technol-
ogy Computation Center, a finding aid (AC.0062), Massachusetts Institute of Technol-
ogy, Institute Archives and Special Collections, MIT Libraries, Building 14N-118, 77
Massachusetts Avenue, Cambridge, MA, March 24, 2010, 14 pages. The materials in
this collection are mostly from before the CTSS era. It does, however, refer to other
MIT collections including papers relating to CTSS and the work of Fernando Corbató.

VanVleck95. Van Vleck, Tom. How I got started in computers, 1995, http://www.
multicians.org/thvv/boyd.html

VanVleck02. Van Vleck, Tom. 1401s I have known, an evolving (starting in 1995) website,
http://www.multicians.org/thvv/1401s.html

VanVleck01a. Van Vleck, Tom. The history of electronic mail, an evolving (starting in
2001) website, http://www.multicians.org/thvv/mail-history.html

VanVleck01b. Van Vleck, Tom. Tech Square, an evolving (starting in 1993) website,
http://www.multicians.org/tech-square.html

VanVleck03. Van Vleck, Tom. CTSS creators and users, 2003, http://www.multicians.
org/thvv/ctss-list.html

VanVleck11. Van Vleck, Tom. The IBM 7094 and CTSS, an evolving (starting in 1995)
website, http://www.multicians.org/thvv/7094.html

Varian91. Varian, Melinda. VM and the VM community: past, present, and future,
April 1991, http://www.leeandmelindavarian.com/Melinda/neuvm.pdf; 1997 re-
vision: http://www.leeandmelindavarian.com/Melinda/25paper.pdf

Vyssotsky65. Vyssotsky, V. A., F. J. Corbató, and R. M. Graham. Structure of the Multics
Supervisor, Proceedings of the 1965 Fall Joint Computer Conference, pp. 203–212,
http://www.multicians.org/fjcc3.html

Waldrop01. Waldrop, M. Mitchell. The Dream Machine: J. C. R. Licklider and the Revolution
That Made Computing Personal, Viking Press, New York, 2001.

Ware08. Ware, Willis H. RAND and the Information Evolution A History in Essays and
Vignettes, The RAND Corporation, Santa Monica, CA, 2008, http://www.rand.org/
content/dam/rand/pubs/corporate_pubs/2008/RAND_CP537.pdf

Weik64. Weik, Martin H. A Fourth Survey of Domestic Electronic Digital Computing Sys-
tems, Report No. 1227, Ballistic Research Laboratories, Aberdeen Proving Ground, MD,
January 1964, pp. 168–169,
http://ed-thelen.org/comp-hist/BRL64-i.html#IBM-7094-II

Weizenbaum66. Weizenbaum, Joseph. ELIZA — A Computer Program For the Study of
Natural Language Communication Between Man And Machine, Communications of the
ACM 9 (1), January 1966, pp. 36–45.

Wilkes71. Wilkes, M. V. Automatic load adjustment in time-sharing systems, Proceedings
of the ACM SIGOPS Workshop on System Performance Evaluation, Association for
Computing Machinery, New York, 1971, pp. 308–320.



Colophon

This brochure was typeset with the LATEX system created by the famous computer scientist
Leslie Lamport (and since extended by many other people) and based on the TEX system
created by the famous computer scientist Donald Knuth. Both of these systems were
revolutionary in their time, and they remain vibrant parts of the computer world’s longest
running open source success story.

The typefaces are from the extensive Lucida typeface family of fonts designed by
Charles Bigelow and Kris Holmes from 1985 onward. The Lucida family was specifically
developed with computer output devices in mind.



50

Change history

Rev. 01, 2011-06-24: Corrected various typos in the print edition.

Rev. 02, 2011-07-02: Added new content from Corbató and Scherr; dropped redundant
content from Van Vleck.

Rev. 03, 2011-12-05: Updated the sentence about Dave Pitts creating a version of CTSS
running on a 7094 emulator.

Rev. 04, 2012-01-11: Added a person to the Acknowledgments and added an item to the
bibliography.

Rev. 05, 2012-12-15: Updated the URL for the Melinda Varian document in the bibliogra-
phy; updated the URL for the location of this brochure on the Computer Society
website.




