TO: Distribution
FROM: R. B. Snyder
DATE: 31 May 1973
SUBJECT: Use of the Bulk Store

This MOSN is intended to define how to set up the various switches on the bulk store, how to alter the configuration check to use the bulk store, and how to read any error messages that might be printed by EOS or Multics relative to the bulk store. Note: there is also included in this document a bulk store configuration check list for service and development to be used as a simple guide for operations for setting the switches on the bulk store and memories. These check lists are in appendices A and B.

Port Select Switches

The first column of switches to be discussed are to be found in the bulk store maintenance panel box labeled FORT SELECT. These switches are called the PORT ENABLE switches and they are to be set in either the ON or OFF position. As the name implies, these switches are used to enable a path from the various memories to the bulk store. Currently, memory A goes to bulk store port A, memory B to port B, and memory C to port C.

The next column of switches in the FORT SELECT panel box are the INITIALIZE ENABLE switches. These allow the receipt of an initialize signal from the memory if they are enabled. They should all be in the OFF position. Next is the column of switches labeled ASSIGNMENT. In the case where several memories are to be made available to the bulk store, it must know which memory contains lower order addresses and which the higher. Thus if memory A (bulk store port A) and memory B (port B) are hooked up to the bulk store and memory A is the low memory, port A assignment switches should be 000 and the port B assignment switches should be 001.

The next column of switches are the ADDRESS RANGE switches and these are used in the case where only half of a memory is on line to the bulk store. Normally, all of these switches should be in the FULL position. The next column of switches are the PORT GROUP switches. It is possible to have several (up to 4) independent computer systems attached to the bulk store. Since this will not normally be done, a discussion of how this is possible is deferred until later in this MOSN. The normal setting of these switches will be 00 (port group 00) for the entire column.

Page-1
last column is labeled INTERLACE. These switches are used to specify if a pair of memories attached to the bulk store are to be accessed by the bulk store using more, 2-word, or 4-word interface.

BSU_SELECT

The next maintenance panel box is to the right of the PORT SELECT box and it is labeled BSU SELECT. The main function of the switches in this section is to subdivide the bulk store among several independent computer systems in a variety of ways. The leftmost column of switches in the BSU SELECT area is labeled LOGICAL BSU. There are 8 logical Bulk Store Unit (BSU) channels labeled A thru H. There are hardware patches associated with these logical BSU channels which specify what the size of the bulk store is for each logical BSU channel. These patches are on logic cards, not on the maintenance panel. Currently, logical BSU channels A and B are patched to a BSU size of 256K words. C and D are patched to 512K words, E and F to 1M words, and G and H to 2M words. Consequently, if one were to try to access the bulk store thru logical channel A or B, one could only read 256K words. Since the bulk store currently has 2M words, one could use logical BSU channels G or H to access all 2M words. However, since the normal mode of use for the bulk store for now will be to share it between the development and service machines, we must use several logical BSU channels to break the addressing capabilities into small units. We will use the logical BSU channel E to access the first 1M words, channel C to access the next 512K words, and channels B and A to access the last two groups of 256K words. The way in which one uses a logical BSU channel is to enable it via the column of switches labeled PORT GROUP ASSIGNMENT. It was mentioned previously that up to 4 computer systems could access the bulk store. These computer systems are called PORT GROUPS in bulk store terminology. Service will be designated as PORT GROUP 00; development, as PORT GROUP 01.

To give all 2M words to service, set the PORT GROUP ASSIGNMENT switches labeled 00 opposite logical BSU channels A, B, C, and E to the YES position. All other PORT GROUP ASSIGNMENT switches should be in the command (NO) position. To give 1-3/4M words to service, set the PORT GROUP ASSIGNMENT switches labeled 00 and opposite logical BSU channels B, C, and E to YES. To give the last 1/4M words to development, set the PORT GROUP ASSIGNMENT switch labeled 01 and opposite logical BSU channel A to YES.

The column of WRITE INHIBIT switches should all be in the OFF position. These switches may be used to prevent the writing of certain portions of the bulk store.
Configuration Cards

This takes care of all of the switches needed to configure the bulk store. A brief discussion of the configuration cards follows, but these cards are discussed further in MOSN-4.3 which will soon be reissued in which all Multics configuration cards are described. To configure the bulk store in a configuration card sense, one must have a BULK card. The format of the BULK card is as follows:

BULK frec nrec port int_cell

where frec is the number of the first usable 1024 word record (usually 0), nrec is the number of 1024 word pages which may be used, port is the memory port to which the bulk store is attached, and int_cell is the interrupt cell assigned to the bulk store. Currently, nrec is 2048 (there are two million words of storage on the bulk store at this time), port is 2, and int_cell is 2.

If one wishes to use the bulk store as a paging device (the normal way in which it will be used), one must provide the following card:

PAGE BULK frec nrec

where frec is the number of the first 1024 word record to be on the paging device and nrec is the number of 1024 word pages to be used for a paging device. Normally, 256 1024 word pages will be used in a development configuration while the entire 2048 pages will be used for a paging device in the service configuration.

In addition, one must specify a partition card such as the following:

PART PAGE 0 4000 0 0 0 0 0 0 0 0 for service

or

PART PAGE 3400 400 0 0 0 0 0 0 0 0 for development

As can be seen from this card, the device id assigned to the bulk store is 1. Consequently, if one were ever to run the bulk store as a normal device in the secondary storage hierarchy, one would produce a card such as the following:

PART MULT 0 2048. 0 6000. 0 0 0 0 0 0

This card assigns the DSU-190s and the bulk store as secondary storage.

This completes the discussion of how to configure the bulk store. Figure 1 which follows defines the possible error messages that
Configuration Cards

This takes care of all of the switches needed to configure the bulk store. A brief discussion of the configuration cards follows, but these cards are discussed further in MOSN-4.3 which will soon be reissued in which all Multics configuration cards are described. To configure the bulk store in a configuration card sense, one must have a BULK card. The format of the BULK card is as follows:

\[\text{BULK } \text{frec } \text{nrec } \text{port } \text{int_cell} \]

where frec is the number of the first usable 1024 word record (usually 0), nrec is the number of 1024 word pages which may be used, port is the memory port to which the bulk store is attached, and int_cell is the interrupt cell assigned to the bulk store. Currently, nrec is 2048 (there are two million words of storage on the bulk store at this time), port is 2, and int_cell is 2.

If one wishes to use the bulk store as a paging device (the normal way in which it will be used), one must provide the following card:

\[\text{PAGE BULK } \text{frec } \text{nrec} \]

where frec is the number of the first 1024 word record to be on the paging device and nrec is the number of 1024 word pages to be used for a paging device. Normally, 256 1024 word pages will be used in a development configuration while the entire 2048 pages will be used for a paging device in the service configuration.

In addition, one must specify a partition card such as the following:

\[\text{PART PAGE } 0 \text{ 4000 0 0 0 0 0 0 0 0 0} \text{ for service} \]

\[\text{PART PAGE } 3400 \text{ 400 0 0 0 0 0 0 0 0 0} \text{ for development} \]

As can be seen from this card, the device id assigned to the bulk store is 1. Consequently, if one were ever to run the bulk store as a normal device in the secondary storage hierarchy, one would produce a card such as the following:

\[\text{PART MULT } 0 \text{ 2048 0 6000 0 0 0 0 0 0} \]

This card assigns the DSU-190s and the bulk store as secondary storage.

This completes the discussion of how to configure the bulk store. Figure 1 which follows defines the possible error messages that
can be received on the operator's console. In addition, a discussion follows which describes a way in which the bulk store will be shared between the service and development systems. Finally, it should be noted that the bulk store can be tested by IOS using the TEST command in exactly the same ways in which the bulk store or disks are currently tested (i.e., TEST PART PAGE ... where the bulk store is the paging device or TEST BULK DEVICE ... etc.).
Bulk Store Error Message Format

The bulk store error message is of the following format:

\[\text{BULK STORE ERR, STATUS} = x \times x \]
\[\text{CSB STATUS} = 0, \text{ADDR} = z \]

If a non-zero CSB status is ever printed, a member of the Multics programming staff should be contacted immediately. CSB status consists of three 36-bit words. The first word is in the following format:

![Table: Major and Minor Status Codes](image)

Figure 1 Major and Minor Status Codes
Listed below are the various possible major and minor status conditions.

<table>
<thead>
<tr>
<th>MAJOR_STATUS_CODE</th>
<th>CONDITION</th>
<th>SUBSTATUS_CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>Subsystem Ready</td>
<td>000000</td>
</tr>
<tr>
<td>0010</td>
<td>Subsystem Attention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BSU Address Not Present</td>
<td>000000</td>
</tr>
<tr>
<td></td>
<td>No Response From BSU</td>
<td>000010</td>
</tr>
<tr>
<td></td>
<td>Error Detected In BSU</td>
<td>000100</td>
</tr>
<tr>
<td></td>
<td>Hardware Write Inhibited</td>
<td>000001</td>
</tr>
<tr>
<td>0011</td>
<td>Data Alert</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EDAC Detected Non-Correctable Data Error</td>
<td>000001</td>
</tr>
<tr>
<td></td>
<td>Hardware Detected Data Error</td>
<td>00X010</td>
</tr>
<tr>
<td></td>
<td>Hardware Detected Control Error</td>
<td>0010X0</td>
</tr>
<tr>
<td></td>
<td>Failed to Compare</td>
<td>100000</td>
</tr>
<tr>
<td></td>
<td>Write Verification Failed</td>
<td>010000</td>
</tr>
<tr>
<td></td>
<td>Write Conditional Inhibited</td>
<td>000100</td>
</tr>
<tr>
<td>0100</td>
<td>End of File</td>
<td>000000</td>
</tr>
<tr>
<td>0101</td>
<td>DCB Command Reject</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid Instruction Code</td>
<td>000001</td>
</tr>
<tr>
<td></td>
<td>Invalid BSU Address</td>
<td>000100</td>
</tr>
<tr>
<td></td>
<td>Hardware Detected Control Error</td>
<td>00X010</td>
</tr>
<tr>
<td>1101</td>
<td>DCW Reject</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardware Detected Control Error</td>
<td>0010X0</td>
</tr>
<tr>
<td></td>
<td>Hardware Detected Data Error</td>
<td>00X010</td>
</tr>
<tr>
<td></td>
<td>DCW Out of Bounds</td>
<td>000100</td>
</tr>
<tr>
<td></td>
<td>Invalid DCW</td>
<td>000001</td>
</tr>
<tr>
<td></td>
<td>Hardware Detected Data Error</td>
<td>00X010</td>
</tr>
</tbody>
</table>

The second word and the third word of the status codes are for use of FED (Site Engineers) in further analyzing bulk store errors. "z" is the bulk store address.
APPENDIX A

CHECKLIST FOR CONFIGURING THE BULK STORE FOR SERVICE ONLY

1) Enable the port to which the bulk store is attached at each memory controller being used on service.

2) At the bulk store, set the PORT ENABLE switches for each memory being used on service to the ON position. All other PORT ENABLE switches should be in the OFF position.

3) Make sure all INITIALIZE ENABLE switches are in the OFF position.

4) Set the ASSIGNMENT switches for the bulk store port attached to the low order service memory to 000. If there are three memories on service, set the ASSIGNMENT switches for the bulk store port attached to the middle order service memory to 001. Set the ASSIGNMENT switches for the high order memory to 010.

5) Set all ADDRESS RANGE switches to the FULL position.

6) Set the PORT GROUP switches for the three service memories to 00.

7) Set all INTERLACE switches to the appropriate values.

8) Set the PORT GROUP ASSIGNMENT switch labeled 00 opposite LOGICAL BUS CHANNELS E, C, B, and A to the YES position. All other PORT GROUP ASSIGNMENT switches should be in the NO position.

9) Set the ASSIGNMENT switches for LOGICAL BUS A to 7 and the PHYSICAL BUS switches for LOGICAL BUS A to 5. For LOGICAL BUS B, they should be 6 and 5; for LOGICAL BUS C, they should be 2 and 5; and for LOGICAL BUS E, they should be 0 and 4. 10) Set all WRITE INHIBIT switches to the OFF position.

11) Set the PHYSICAL BUS CONTROL switches labeled 4 and 5 to the ON position. All other PHYSICAL BUS CONTROL switches should be in the OFF position.

12) Set the CONTROL BASE switches for PORT GROUP 00 to 1100 decimal.

13) Set the TEST/NORMAL switch to TEST, the OPERATION RETRY switch to the DISABLE position, the ALARM DISABLE switch to the NORMAL position, and all the SYSTEM CONTROL & MONITOR switches to the OFF position.
In addition, the following service and development configuration changes should be in the service and development config packs:

RAFT PAGE 0 4000 0 0 0 0 0 0
RAFT PAGE 0 4000
RAFT BULK 0 4000
BULK 0 4000 2 2
APPENDIX B

CHECKLIST FOR CONFIGURING THE BULK STORE FOR SERVICE AND DEVELOPMENT

1) Enable the port to which the bulk store is attached, at each memory controller being used on development and service.

2) At the bulk store, set the PORT ENABLE switches for the memories being used to the ON position. All other PORT ENABLE switches should be in the OFF position.

3) Make sure all INITIALIZE ENABLE switches are in the OFF position.

4) Set the ASSIGNMENT switches for the bulk store port attached to the development memory to 000. Set the ASSIGNMENT switches for service memories as described in APPENDIX A, part 4.

5) Set all ADDRESS RANGE switches to the FULL position.

6) Set the PORT GROUP switches for the two service memories to 01. Set the PORT GROUP switch for the development memory to 01.

7) Set all INTERLACE switches to the appropriate values.

8) Set the PORT GROUP ASSIGNMENT switch labeled 00 opposite LOGICAL BSU channels E, C, and B to the YES position. Set the PORT GROUP ASSIGNMENT switch labeled 01 opposite LOGICAL BSU channel A to the YES position. All other PORT GROUP ASSIGNMENT switches should be in the NO position.

9) Set the ASSIGNMENT switches for LOGICAL BSU A to 7 and the PHYSICAL BSU switches for LOGICAL BSU A to 5. For LOGICAL BSU B, they should be 6 and 5; for LOGICAL BSU C, 2 and 5; and for LOGICAL BSU E, 0 and 4.

10) Set all WRITE INHIBIT switches to the OFF position.

11) Set the PHYSICAL BSU CONTROL switches labeled 4 and 5 to the ON position. All other PHYSICAL BSU CONTROL switches should be in the OFF position.

12) Set the CONTROL BASE switches for PORT GROUP 00 and 01 to 1100 octal.

13) Set the TEST/NORMAL switch to NORMAL, the OPERATION RETRY switch to the DISABLE position, the ALARM DISABLE switch to the NORMAL position, and all the SYSTEM CONTROL & MONITOR switches to the OFF position.
In addition, the following configuration cards should be in the service and development config decks:

Service

<table>
<thead>
<tr>
<th>PART PAGE</th>
<th>PAGE BULK</th>
<th>BULK</th>
</tr>
</thead>
<tbody>
<tr>
<td>3460 0 0 0 0 0 0 0</td>
<td>4600 3460 400</td>
<td>4000 2 2</td>
</tr>
</tbody>
</table>

Development

<table>
<thead>
<tr>
<th>PART PAGE</th>
<th>PAGE BULK</th>
<th>BULK</th>
</tr>
</thead>
<tbody>
<tr>
<td>3400 400 0 0 0 0 0 0 0 0</td>
<td>3400 400</td>
<td>4000 2 2</td>
</tr>
</tbody>
</table>