
MULTICS TECHNICAL BULIErIN MTB-020

DATE: December 4, 1973

TO: Distribution

FROM: R. A. Freiburghouse

SUBJECT: Register Allocation Via Usage Counts

Attached is a paper on "Register Allocation Via Usage Cotlllts"
which has been sent to communications of ACM for publication.

Multics Project internal working documentation. Not to be reproduced
or distributed outside the Multics Project.

Hegl~ter Allocation Via Usi\Y,P. Counts
R. A. FreiburY,house

Honeywe 11 Information Sys terns Incorporated
575 Technology Square

Cambridge, Massachusetts 02139

Abstract: This paper introduces the notion of usage counts,
shows how usage counts can be developed by algorithms that
eliminate redundant computations, and describes how usage
counts can provide the basis for register allocation. The
paper compares register allocation based on usage counts to
other commonly used register allocation techniques, and
presents evidence which shows that the usa~e count technique
is significantly better than these other techniques.

Keywords and Phrases: optimization, redundant computations,
common subexpressions, register allocation, compilers,
programming languages, virtual memory, demand paging.

CR Categories: 4.12, 4.2, 4.39

References:

1. Allen, F. Program Opti~ization. Annual Review of Automatic
Programming, Pergamon Press, 5(1968), 239-307.

- ,.. 2. Busam, V., and Englund, D. Optimization of Expressions in
Fortran. Comm. ACM Vol 12, 12CDec 1969), 666-674.

3. Cocke, J. Global Common Subexpression
Proceedings of a Symposium on Compiler
SIGPLAN Notices, Vol 5, 7(July 1970), 20-24.

4. Frelburghouse, R. The Multics PL/I Compiler.
Proc. FJCC (1969), 187-199.

Elimination.
Optimization.

AFIPS Conf.

5. Green, P.
Batchelor's
(May 1973).

An Implementation of SEAL on Multics.
Thesis. Dept. of Electrical Engineering. MIT,

6. Gries, D. Compjler Construction for Digital Computers. John
Wiley and sons, Inc., New York, (1971).

1. The Mu 1 ti cs PL/ I Language. AG94, Honeywe 11 Information
Systems Inc., (1972).

8. Horowitz, L., Karp, R., Miller, R., and Winograd, S. Index
Register Allocation. Jour. ACM Vol 13, l(Jan 1966), 43-61.

9. Lowry, E., and Medl-0ck, C. Object Code Optimization. Comm.
ACM Vol 12 lCJan 1969), 13-22.

page 1

10. Luccio, F. A Comment on Index ReP,ister Allocation. Comm.
ACM Vol 10, 9(Sept 1967), 572-574.

1. Introduction

Algorithms for eliminating redundant computations are well known
and widely implemented(l,2,3,6,9). Similarly, several techniques
for register allocation have appeared in the
literatureC2,8,9,10). This paper intoduces a very simple
mechanism, the usage count, which ties these two subjects
together and w~ich provides the basis for an easily implemented
technique for register allocation that is remarkably efficient.

2. Terminology

A computation is an
result value that
Cal,a2, ••• ,an), and
no effect except to

operation f(al,a2, ••• ,an) which yields a
is determined solely by the input operands

which produces no side-effects; i.e. it has
yield a result value.

A computation is redundant if. there exists a previously evaluated
computation which yields the same result. Since a compiler must
determine the redundancy of a computation without evaluating It,
a compiler generally considers a computation f(al,a2, ••• ,an) to
be redundant if there exists a previous computation
g(al,a2, ••• ,an) such that g(al,a2, ••• ,an) is always evaluated
before f(al,a2, ••• ,an), no input operand ak has been assigned a
value since g(al,a2, ••• ,an) was evaluated, and f and g yield the
same result for a given set of input operands.

A .lJ:.Y.e. usage count is the number of times that a given value is
used during the execution of a program. A true usage count
cannot be determined without knowing exactly how many times each
reference to a given value will be evaluated. Since, in general,
a compiler does not have this information, it cannot develop a
true usage count. Therefore, we define a usage count to be the
number of distinct references to a given value in the text of a
program. Usage counts are easily derived from most algorithms
that eliminate redundant computations.

A linear region is a region of program which has one entry and
one exit; i.e. the flow of control through the region is a
straight line.

3. A Simple Algorithm

The algorithm given here is derived from an algorithm described
by Gries(6). It eliminates redundant computations and develops ~
usage counts over regions of a program that are bounded by
labels.

page 2

Consider a linear representation of a program in which each
operation is represented by a prefix operator and one or more
operands. Each operation is represented on a single numbered
line, and has an associated usage count. If an operation is not
a computation as defined in section 2, its usage count is zero.
If an operation is a computation, Its usage count is the number
of times its value is referenced in the program.

Each variable declared in the program Is represented by a symbol
table entry that contains an integer, S, which identifies the
line that last stored a value into the variable. Initially S is
zero.

"S of x" refers to the integer S stored in the symbol table entry
for the variable x.

The function limit(y) returns a line number. The input operand y
is either a line number or the name of a variable. If y is the
name of a variable, 1 imi t(y) returns the value of S of y;
o the rw i s e, i t re tu r n s :

max (1 i mi t Ca 1), 1 i mi t (a 2) , •• ., 1 i m I t Can))

where al, a2, ••. , an are the ·operands on 1 i ne y.

When y is a line number, the effect of limit(y) is to return the
highest line number stored in the symbol table entry of any
variable that is an operand of line y or of any line which yields
a value that is input to line y.

Note that an actual Implementation of this algorithm could avoid
recomputing the limit for a given line by associating it with the
line when that line is processed.

The program:

Ll: a ·-. - b+c

1s represented as:

11 ne
1
2
3
4
5
6

count
0
1
1
1
1
0

operator
label
value
value
add
address
store

operands
Ll defines Ll as a label
b yields the value of b
c yields the value of c
2,3 adds the values of lines
a yields the address of a
5,4 stores the value of line

the storage addressed by

page 3

2 and 3

4 into
1 i ne 5

To eliminate redundant computations and d~velop usage counts for
programs in this representation, let the last labeled line
number, L, be zero; and perform the following for each line
beginning with line one. ·

Select the applicable case:

1. Case(the operator on this line ts a store)

1.1 Let j be the 1st operand of this line. Let x be the
variable identified by the 1st operand on line j. Set
S of x to the current line number.

2. Case(the operator on this line defines a label)

2.1 Let L be the current line number. Note that an operator
that defines a label does not compute a value and does
not store Into a variable, it only defines the
occurrence of a label.

3. Case(the operator on this line does not define a label or
store into a variable)

3.1 Let k be the curre~t line number.

3.2 Let r be max(L,limit(a1),limit(a2), ••• ,ltmit(an)) where
a1,a2, ••• ,an are the operands of the current line.

3.3 Replace each operand that identifies a line whose
operator is "use" by the operand of that line, and mark
this operand as having been replaced.

3.4 Examine each line between liner and the current line
looking for a line that is equivalent to the current
line. Note that the number of lines searched can be
arbitrarily limited to avoid excessive search time.

3.5 If no equivalent line was found, add one to the usage
count of each line irlentified by an operand marked in
step 3.3.

3.6 If an equivalent line was found, replace the current
line by a line whose usage count is zero, and which has
the form:

use n

where n ts the line number of the equivalent line.

Given the program:

a:= b+c•d
x:= b+y+c•d

page 4

--·

The initial and optimized representations are given below:

In it I a 1 Representation Optimized Representation

1 i ne
1
2
3
4
5
6
7
8
9

count operator
1 value

operands
c

count operator
1 value

operands
c

10
11
12
13
14
15
16

l value
1 multiply
1 value
1 add
1 ~ddress
0 store
1 value
1 value
1 add
1 value
1 value
1 multi p 1 y
1 add
1 address
O store

4. Register Allocation

d
1,2
b
3, 4
a
6,5
b
y
8,9
c
d
11, 12
10, 13
x
15, 14

1 value
2 multiply
2 value
1 add
1 address
0 store
0 use
1 value
1 add
0 use
0 use
O use
1 add
1 address
0 store

d
1, 2
b
3,4
a
6,5
4
y
4,9
1
2
3
10, 3
x
15, 14

To avoid recomputing a value unnecessarily, a code generator must
hold the result of a computation in a register or temporary until
It is no longer needed. However, to minimize the number of times
that the contents of registers are stored or reloaded, a code
generator must insure that it does not hold a value in a register
longer than it is needed. This aspect of register allocation we
call the yalue retention nroblem.

When there is excess demand for registers, a code generator must
chose which register to load so as to minimize the number of
stores and loads. This aspect of register allocation we call the
register demand problem.

To solve these problems by means of usage counts,
generator must maintain a model of the object program's
state. The model is a record of which value is currently
each register and temporary, and Includes the usage count
value so held.

a code
machine
he 1 d in
of each

As a code generator scans the program and generates instructions,
it decrements the usage count of a
a reference to the value. When the
the register or temporary holding
reuse. ~hen there is an excess
register containing the value with
selected for loading. Its previous
a copy of it does not already exist

page 5

value each time it encounters
usage count drops to zero,
the value can be released for

demand for registers, the
the lowest usage count can be
value need be stored only if
in storage.

S. The Value Retention Problem

Usage counts developed for linear regions provide an optimal
solution to the value retention problem. Usage ~aunts developed
for nonlinear regions, do not provide an optimal solution to the
value retention problem, as is shown by the following program.

line count operator operands
1 3 value x
2 . . . region 1
3 0 If-goto y,Ll
4 0 use 1
5 • • • region 2
6 0 goto L2

.7 0 label Ll
8 . . . region 3
9 0 use 1

10 0 label L2

In this program, the value of line 1 is used three times.
Hbwever, in any given execution of the program it will be used
only twice. A code generator following the register allocation
scheme described here would retain the value of x in a register
or temporary throughout line 5, even though the value will not be
used. Usage counts developed for each region of the program
could avoid this problem.

6. The Register Demand Problem

For linear regions in the previously described representation,
the optimal solution to the register demand problem is given by:

1. Let Rl,R2, •.• ,Rn be the values contained In the registers at
the time that line j Is to be compiled.

2. For k=l,2, ••• ,n search forward from line j to find the next
line that references Rk. If no line references Rk, the
register containing Rk ts the register to load; otherwise,
let Lk be the number of the line that references Rk, and
continue.

3. Let m be max(Ll,L2, ••• ,Ln).

4. The register to load Is the register containing the value
referenced on line m.

This solution is optimal because it minimizes the number of
loads by retaining in registers those values which will be
referenced on the lines following any given 1 ine. ~

page 6

,,...-

Unfortunately, the optimal solution i.s often not practical
because it requires look-ahead and only works for linear regions.
Therefore, most comp i 1 ers use either .the 11 least-recent 1 y-used"
criterion or the 11 least-recently-loaded 11 criterion when selecting
a register to load.

To test the relative performance of the optimal, usage count,
least-recently-used, and least-recently-loaded criteria, 2500
linear regions each consisting of 20 lines were input to a
program which allocated registers using each criterion. The
program counted the number of loads produced using each criterion
for each region.

The number of registers was fixed at two, but the number of
distinct values referenced in a given region was varied between 4
and 8, thereby varying the ratio of values to registers.

To insure that the regions contained realistic patterns of
references, each region was constructed by selecting a random
point within the rep,ion and building a cluster of references to a
given value around that point. This procedure was followed for
each distinct value to be referenced in the region. The density
of these clusters was varied. so as to create five types of
regions: regions containing very dense clusters of references,
regions containing dense· clusters of references, regions
containing moderately dense clusters of references, regions
containing loose clusters of references, and regions containing a
nearly random distribution of references.

Table 1 shows that the usage count criterion generated fewer
loads than either the least-recently-used or the
least-recently-loaded criterion, and was remarkably close to the
optimal method. Table 1 also shows that the least-recently-used
criterion generated fewer loads than the least-recently-loaded
criterion. The relative performance of these critera held for
all types of regions.

Table 2 compares the relative performance of these criteria by
giving the total number of cases in which each criterion produced
the fewest loads.

The number of loads generated by the usage count criterion would
have been fewer if the program had decided tie cases by means of
the least-recently-used criterion, rather than the
least-recently-loaded criterion.

Based on Its performance in linear regions, we would expect the
usage count criterion to work well in nonlinear regions, but no
experimental evidence has been produced to verify this
hypo thesis.

Since the register demand problem is essentially the same as the
demand paging problem, we would expect that a paging algorithm

page 7 ·

based on usage counts would perform better than algorithms based
on program history, such as algorithms based on the
least-recently-used criterion.

7. Implementation Experience

A compiler for an algo168-llke language was constructed which
used the register allocation algorithm given here(5). During the
implementation of the compiler, usage counts were found to be a
valuable check on the correct operation of the code generator.
If a usage count•dropped below zero or remained greater than
zero, it was an indication of a compiler error.

The Multics PL/I compiler(4,7) uses a directed graph
representation of programs which includes usage counts. The
compiler eliminates redundant computations across an entire
procedure or begin-block, and it develops a single usage count
for each value. The code generator uses usage counts to
determine how long to retain a value in a register or temporary,
and to determine which register to store In cases of excess
demand. Experience with this implementation suggests that usage
counts are an effective, simple, and practical basis upon which
to allocate registers and tem.porarles.

page 8

Table 1

Loads Generated Using Each Criterion

Region
Type

4-1
4-2
4-3
4-4
4-5

5-1
5-2
5-3
5-4
5-5

6-1
6-2
6-3
6-4
6-5

7-1
7-2
7-3
7-4
7-5

8-1
8-2
8-3
8-4
8-5

Optimal

444
467
530
552
584

524
588
648
683
68 7

639
677
725
785
828

73 7
748
798
876
915

838
851
909
970
980

Usage
Count

450
4 79
553
579
622

527
607
666
70 7
718

643
685
74 7
814
851

739
759
808
895
935

838
855
921
991

1008

Least
Recently
Used

485
524
630
661
721

555
664
758
820
826

679
750
82 7
947

1004

778
812
907

1030
1095

884
922

1034
1133
1166

Least
Recently
Loaded

505
556
666
698
72 7

581
698
771
856
844

692
778
878
968

1026

794
844
939

1060
112 5

900
951

1067
1159
1191

The high-order digit of the region type is the number of
distinct values referenced in the region. The low-order
digit indicates how the references to the values were
clustered: 1 very dense, 2 dense, 3 moderately dense, 4
loose, 5 nearly random. Each entry in the table gives the
number of loads generated for 100 regions of the indicated
type.

page 9

Table 2

Usage Least Least
Count Recently Recently

Used Loaded

1549 55
1827 54

846 277

Each row of table 2 compares two
criteria by giving the number of cases
in which each· of the two criteria
produced fewer loads than the other
criterion listed in that row. The
optimal method produced fewer loads than
any other criterion in 284 cases. A
total of 2500 cases were compared.

page 10 ·

