
Multics Technical Bulletin MTB-074

To: Distribution

From: Noel I. Morris & Bernard s. Greenberg

Date: May 7, 1974

Subject: I/O Buffer Management in Multics

Part I: Introduction

Overview

In the design documentation for the I/O Interfacer (MTB-028
and MTB-056) , methods are discussed for the proper handling of
I/O buffers. From these design considerations, it became clear
that a specialized interface was needed between the I/O
Interfacer and Multics page control. The I/O Buffer Manager is
designed to be such an interface. It is responsible for
maintaining the workspace buffer segment required by each user of
the I/O Interfacer. The I/O Buffer Manager must ensure that the
workspace buffer is wired-down prior to performing I/O. It must
take steps to unwire the buffer after I/O completion. If the
buffer is longer than 1024 words (one page), it must ensure that
all pages are wired-down contiguously.

Abs-usable Memory

During Multics operation, the low-order system controller is
never subject to dynamic deconfiguration. The core storage
contained in this system controller is referred to as abs-usable
memory. Frames of abs-usable memory may be temporarily wired for
use as I/O buffer workspace. No consideration need be given to
the problems of dynamically removing a system controller which
contains wired I/O buffers. (A frame is a 1024 word block of
core beginning at a 0 mod 1024 address. A frame can be occupied
by a Multics page.)

The I/O Buffer Manager will, through calls to page control,
be able to free up a frame in abs-usable memory and to assign a
page of an I/O workspace buffer segment to that frame. The I/O
Buffer Manager must take special steps when a buffer is larger
than one page. In this case, contiguous frames must be freed and
then assigned to the workspace buffer. Note that pages of the
workspace buffer will be wired into abs-usable core only when I/O
is actually taking place. At other times, the buffer will be
unwired, and the core frames that it occupied will be available
for normal Multics paging.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-074

Part II: Buffering by the I/O Interfacer

Creating ~ I/O Workspace Buffer Segment

The I/O Interfacer will be responsible for creating a
workspace buffer segment for each assigned device. This segment
can be created in the caller's process directory. The ring
brackets of the segment will be set, based on the current
validation level, to (v, v, v) with rw access only to the
~aller's process. This segment is writeable in rings 0 through
v.

At this time, the segment must be made active. That is, the
segment must have an entry in the active segment table (an AST
entry) and a page table. If the entry hold switch in an active
segment's AST entry is turned on, that segment will be guaranteed
not to be deactivated. A Multics system primitive will be
available to turn on the entry hold switch in a segment's AST
entry and return a pointer to the AST entry. The I/O Interfacer
must save the AST entry pointer for later use. Once the
workspace buffer segment has been created and activated, it can
be used to set up IOM DCW lists and data. It is not wired-down
at this time, however.

Wiring .!!!!. I/O Workspace Buffer

When I/O is to be performed on an I/O workspace buffer, the
I/O Buffer Manager must be called. The I/O Buffer Manager will
grab as many frames as needed for the workspace buffer from
available frames in abs-usable memory. It will make the
appropriate calls tn page control to flush the previous contents
of these frames. Then it will assign the pages of the workspace
buffer to these frames contiguously, calling page control to wire
each page of the workspace buffer into its assigned frame. I/O
can now be performed using the workspace buffer.

Unwiring ~ fJ9 Workspace Buffer

When I/O has terminated on a device, the workspace buffer
can be unwired. The I/O Buffer Manager will be called at I/O
termination. However, the pages of the workspace buffer will
not actually be unwired at this time. An active device will
probably receive another connect shortly after a terminate. It
is extremely inefficient to unwire the workspace buffer only to
have to wire it again almost immediately. Therefore, the I/O
Buffer .Manager will "remember" that I/O has terminated on a
particular workspace buffer, and, after an appropriate time
interval has elapsed with no further connects, will then actually
unwire the buffer. This mechanism will avoid unnecessary calls
to page control. It will also avoid tying up wired-down core for
idle devices which remain attached.

HTB-074 Page 3

A time-out entry in the I/O Buffer Manager will be called by
the Multics traffic controller at appropriate time intervals to
perform the actual unwiring of idle workspace buffer pages. The
time interval must be short enough to not tie up core
unnecessarily. Yet, it must be long enough to prevent needless
unwiring and rewiring of pages. A time interval of between 10
and 30 seconds will most likely be acceptable.

neleting .!!l I/O Workspace Buffer Segment

When a device is unassigned, the I/O workspace buffer
segment must be deletedu First, the I/O Interfacer must take
steps to ensure that no I/O is still taking place. Then, an
entry in the I/O Buffer Manager must be called to force unwire
all pages of the workspace buffer. Upon return from the I/O
Buffer Manager, the workspace buffer segment can be deactivated
and then deleted.

Note that care must be taken to detect that the workspace
buffer is still wired-down when the force unwire entry is called.
If the buffer has already been unwired, the force unwire entry
must just return to its caller. The I/O Buffer Manager must be
extremely careful not to unwire pages that no longer belong to
the workspace buffer and might, in fact, belong to another
buffer.

Changes ~ I/O Interfacer seecif ications

The scheme described above completely replaces the
abs-wireable bit in the AST entry as designed in MTB-056. The
page control modifications described in that document need not be
implemented. In addition, the workspace buffer size limitation
described in MTB-056 will not exist.

Page 4 MTB-074

Part III: Buffering by Hardcore Users of the I/O Interfacer

A Hardcore Input Buffering Strategy

Designers of DIMs which reside in the hardcore should also
take advantage of the facilities provided by the I/O Buffer
Manager. One buffering scheme (proposed by R. Kanodia for the
ARPA Netowrk IMP DIM) would allow a semi-infinite number of large
segments to be filled up, one block at a time, by input from a
device. As each block became full, the DIM would, at interrupt
time, initiate I/O on the next block. When a segment became
full, the DIM would, again at interrupt time, switch to the next
sequential segment. Outer ring callers to such a DIM could pick
up their data at their own convenience. When all data from an
input segment was picked up, the segment could be deleted by the
nIM. Only the block currently accepting input would be
wired-down.

Sharing Non-hardcore Segments

The strategy described above requires that the buffer
segment in use be available in the address space of every process
running under Multics, since an I/O completion interrupt can
occur in any running process. Normally, only hardcore segments,
loaded from the Multics system tape during system initialization,
can be shared with the same segment number among many processes.
But, the scheme above may require a rather large number of buffer
segments, and there is a definite limit to the number of
haardcore segments which may be loaded during system
initialization. Therefore, an alternative method is p~oposed
below to allow the sharing of buffer segments:

~ "ab; seg"

A program running in Multics hardcore has access to the
descriptor segment of the process in which it is running. It is
therefore possible for a hardcore program to construct a segment
descriptor word (SDW) pointing to any legitimate page table, to
store it somewhere in the descriptor segment, and to reference
the pages pointed to by that page table. This can be done
through the normal use of ITS pointers referencing the segment
number which would cause that manufactured SDW to be used during
6180 address preparation. Note that the entire access control
mechanism can be bypassed in this way.

In fact, several hardcore programs in Multics do use this
method to access segments not normally in their address space.
The way in which this is accomplished is to load a zero length,
unpaged segment during Multics in.itialization. Although no data
is actually loaded, a word-pair is reserved in the hardcore
portion of the descriptor segment of all processes. The segment
names supplied from the Multics system tape are placed in the

MTB-074 Page 5

Segment Loading Table, and hardcore segments can refer to this
"fictitious" segment by name. During system operation, the
reserved word-pair can be filled in with any manufactured SDW
when needed. Once this has been done, the segment name and
number of this "fictitious" segment refer, in this process, to
the segment actually described by the manufactured sow. Such a
"fictitious" segment is generally referred to as an "abs_seg".

Buffer Segmert: Q:'eation ~ Management

The continuous, semi-infinite buffer strategy described
above can easily be implemented by a hardcore DIM through the use
of an "abs seg" as described. The DIM must always have already
created the next buffer segment in line to be used well before it
is actually needed. This can be done via a call to
append branch. In order for a segment to be referenced through
the use of an "abs seg", the segment must be active. Thus, the
segment must be activated, and the entry hold switch in its AST
entry turned on.

When the DIM is ready to use the buffer segment, a system
primitive can be called to construct an sow given an AST entry
pointer. This SOW can be deposited in the descriptor segment
entry for an "abs seg" reserved for use by this DIM. When I/O is
to be performed, a special entry in the I/O Buffer Manager can be
called to wire pages of the buffer. This ·entry can be called at
interrupt time to wire null pages. When I/O completes, the
standard unwire entry in the I/O Buffer Manager can be called to
unwire the buffer pages. Note that the DIM, itself, is
responsible for making these calls.

When a hardcore DIM is finished performing I/O on a segment,
a system primitive must be called to turn off the entry hold
switch in the segment's AST entry. The segment can still be
referenced, but not for the purposes of performing I/O. Note
that when use of an "abs seg" is completed, it is customary to
zero the word-pair in- the descriptor segment containing the
manufactured sow.

Actions Taken at Interrupt Time

When an I/O completion interrupt takes place, the hardcore
DIM can unwire the currently wired block of the buffer segment
through a call to the I/O Buffer Manager. Then, the next block
of the buffer can be wired. Note that when using the special
wiring entry in the I/O Buffer Manager, all pages to be wired
must be null. The system is incapable of waiting for a page to
Ee"'read in from secondary storage at interrupt time. Once the
next block of the buffer is wired, a call can be made to
ioi $hardcore workspace and a new list can be constructed in the
new- block. -Then, a call can be made to ioi_$connect. This

Page 6

completes the interrupt processing.

Hhen a particular buffer segment
segments can be swapped at interrupt time.
an snw pointing to the next buff er segment
entry pointer. (Remember that the DIM had
this next segment in advance.) This new
conjunction with the PIM's "abs_seg".

MTB-074

becomes filled, buffer
The DIM can construct

from the segment's AST
created and activated
SDW can now be used in

Note that before a buffer segment can be referenced at
interrupt time, it must be made available in the address space of
the process that was interrupted. Therefore, the DIM's interrupt
proceclure must always fill in the SDW for its "abs_seg" before
referencing~ buffer segment.

MTB-074 Page 7

Entry:

Part IV: I/O Buffer Manager Calls

iobm$wire buffer

This entry is called to wire-down pages of an I/O buffer
segment. All wired pages will be guaranteed to reside in
contiguous core frames. ~he absolute address of the base of the
workspace buffer will be returned to the caller.

usage

astep

base

declare iobm$wire buffer entry (ptr, fixed bin(lB),
fixed nin(l8), fixed bin(24), fixed bin(l7),
fixed bin(35));

call iobm$wire buffer (astep, base, nwords, absaddr,
rqin'C!ex, rcode) ;

is a pointer to the buffer segment's AST
entry. (Input)
is the off set of the first location in the
buffer segment to be wired. (Input)

nwords is the number of words of the workspace
buffer to be wired-down. (Input)

absaddr

rqindex

rcode

is the absolute address of the base of the
wired-down workspace buffer. (Output)
is a request index. It must be used in later
calls to the I/O Buffer Manager to identify a
given request. The first time
iobm$wire buffer is called, it must be set to
zero. (Input & Output)
is an error code. (Output)

Entry: iobm$wire_buffer_interrupt

This entry is identical to iobm$wire buffer, except that it
is intended for use by hardcore callers o! the I/O Interfacer and
may be called at interrupt time. There is one restriction in the
use of this call: All pages to be wired-down must be null since
this entry will be incapable of paging in non-null pages from
secondary storage. An improper call to
iobm$wire buffer interrupt will result in a non-zero error code
being returned. -

usage
declare iobm$wire buffer interrupt entry (ptr, fixed

bin(l8)7 fixed bin(lB), fixed bin(24), fixed
bin(l7), fixed bin(35));

call iobm$wire buffer interrupt (astep, base, nwords,
absaddr, rqrndex, rcone);

Page 8 MTB-074

Entry: iobm$unwire_buffer

This entry will be called on I/O termination. Actual
unwiring of the pages of the I/O buffer segment will not take
place at this time. Flags will be set for each of the pages to
cause them to be unwired later.

usage
declare iobm$unwire buffer entry (fixed bin(l7), fixed

bin(52)) ,- ·
call iobm$unwire_buffer (rqindex, delta) ;

rqindex is the request index returned in the call to
iobm$wire buffer. (Input)

delta

Entry:

is a time delta. After this time has
elapsed, if no further I/O has. been initiated
using this buffer segment, the pages of the
buffer segment will be unwired. (Input)

iobm$force_unwire buffer

This entry is be called by the I/O Interfacer or a hardcore DIM
prior to deleting a workspace buffer segment. It is the
responsibility of the caller to ensure that all I/O involving
this buffer has terminated.

Usage

astep

Entry:

declare iobm$force unwire buffer entry (ptr);
call iobm$force_unwire_butfer (astep);

is a pointer to the buffer segment's AST
entry. (Input)

iobm$time_out

This entry is called by the Multics traffic controller at
approproiate time intervals. It will check all wired· workspace
buffer pages to see if they can be unwired at this time.

usage

Entry:

declare iobm$time out entry;
call iobm$time_out ();

(There are no arguments.)

grab_aste$grab_aste_io

This entry will ensure that a segment is active. Given a
pointer to a segment, it will return a pointer to that segment's
AST entry. The entry hold switch in the AST entry will be on.

MTB-074

usage
declare grab aste$grab aste io entry (ptr,

bin(JS)) returns Tptr);
astep = grab_aste$grab_aste_io (segptr, rcode);

Page 9

fixed

segptr is a pointer to the segment to be made
active. (Input)

astep

Entry:

is a pointer to the segment's AST entry.
(Output)

grab_aste$release_io

This entry is called to allow an I/O buff er segment to be
deactivated. The entry hold switch in the segment's AST entry is
turned off.

usage

astep

declare grab aste$release io entry (ptr,
bin<Js>>1 -

fixed

call grab_aste$release_io (astep, rcode);

is a pointer to the AST entry of a buff er
segment. (Input)

Page 10 MTB-074

Part V: I/O Buff er Manager Implementation

The Interface j:2, Page Control

The I/O buffer manager provides the ability to abs-wire
contiguous pages of arbitrary segments into contiguous core
frames at arbitrary (i.e., possibly interrupt) times. In order
to wire pages, in general, page reading from secondary storage
must be performed, and waiting for the completion of such
reading. As the latter is impossible at interrupt time, the
restriction is made that only null pages may be abs-wired at
interrupt time. Only the entry iobm $wire buffer interrupt is
permitted such calls. - - -

The wiring of pages on behalf of the I/O Buff er Manager
wiring entries normally involves the contiguous allocation of
abs-usable memory. However, if the pages to be wired have
already been abs-wired by this mechanism (i.e., a previous unwire
call has not timed out), no allocation or wiring is necessary. If
allocation and wiring are necessary, though, the core map will be
scanned for the first contiguous block of abs-usable core
frames large enough to meet the request. Obviously, none of the
pages in this block can already be abs-wired. The occupants of
these core frames will be forcibly evicted. The pages of the
segment which are being requested to be wired are then read into
these core frames in the correct order, and the core frames are
marked as being abs-wired. Note, that if the pages to be read
are null, no page need be read in and no waiting need be done.

If no contiguous block of abs-usable core frames large
enough to satisfy the request is found, a currently
non-abs-usable svstem controller will be made abs-usable,
preventing it from~being dynamically deconfigured. However, a
current hardware restriction in the IOM forces DCW lists for
data channels to be in the first 256K of memory, and thus, only
this much memory can be comandeered for abs-wiring in this way.

Unwire calls to the I/O Buffer Manager involve no
interaction with page control. A timer is set from the parameter
"delta" (see Bookkeepin<J'} , and control returned. Upon the
maturation of this timer, if an intervening wire call to the same
pages has not been made, these pages will be unwired, and the
core marked as no longer abs-wired. At the time of the unwire
timeout, we assume that the contents of these pages may have
changed due to I/O. Thus, we set the page-has-been-modified bit
in the page table words for each of these pages before unwiring.

~ Interface ~ Segment Control

It is essential to prohibit I/O buffer segments from being
deactivated while they are being used as I/O buffers. Doing this
requires setting the entry hold active (aste.ehs) switch in the

MTB-074 Page 11

AST entry of the segment concerned. This implies, for one, that
the segment has an AST entry. Hence, a primitive is provided for
use by the I/O Interfacer, grab aste$grab aste io, which, given
segment pointer, returns an -AST entry pointer. This pointer
points to an AST entry whose entry hold switch has just been
turned on. Activation will be accomplished by locking the
dirctory containing the segment of interest, and then taking a
segment fault on the segment. The entry hold switch will be
turned on before the directory is unlocked. This insures that
the segment will not be deactivated, and that its page table and
AST entry will not move until the entry. hold switch is turned
off.

This entry, grab aste$grab aste io, will also inform cache
control that the segment being used as-an I/O buffer is not to be
encacheable in any .process, and must be driven out of caches now.
A special. bit will be set in the AST entry of the segment to this
effect, and SDW's will be modified.

At the time that a hardcore DIM or the I/O Interfacer is
finished using a given segment as an I/O buffer, the cache
inhibit and entry hold switches should be turned off. The
grab aste$release io entry is provided for this purpose. Prior
to calling this entry, however, the user of the buffer segment
should call iobm$force unwire to clean up the data bases of the

,. I/O Buffer Manager with respect to this buffer segment.

Bookkeeping

The I/O Buffer Manager needs
various wire and unwire requests.
the traffic controller is required
timouts. A table will be set up
following format:

a table to keep track of
Furthermore, coordination with
in order to perform unwire
in a hardcore segment with the

declare 1 iobm data$ external aligned,
2 lock bitCJG),
2 free queue bit(l8) unaligned,
2 in use queue bit(l8) unaligned,
2 timing-out queue bit(l8) unaligned,
2 last a!located fixed bin(l7) unaligned,
2 pad bit{36) unaligned,
2 requests (1:63),

3 unwire time fixed bin(52),
3 astep bit(l8) unaligned,
3 fp bit(9) unaligned,
3 np bit(9) unaligned,
3 thread bit(l8) unaligned,
3 flags,

4 used bit(l) unaligned,
4 timing_out bit(l) unaligned;

Page 12 MTB-074

Three lists of "request" entries are maintained. The list
heads are kept in "free queue", "in use queue", and
"timing out queue". The free queue is a list o? unallocated
entries:" These entries have their "used" bits off. The in-use
queue is a list of entries representing wire requests for which
no unwire request has been received. These entries have their
"used" bits on and their "timing out" bits off. The timing-out
queue is a list of entries representing wire requests for which
unwire requests have been made, but has not yet timed out. These
entries have their "used" and "timing out" bits on, and
"unwire time" contains the clock time after which they should be
unwired:" The thread is in order of increasing unwire time. Note
that neither the "used" nor "timing out" bits are strictly
necessary, due to the list structure, but should be useful as
diagnostic aids. The "thread" field maintains these lists. This
entire table is protected by a loop-type lock. No page faults or
interrupts may be taken while the lock is set.

The fields "astep", "fp", and "np" in the entry represent
the relative AST entry pointer, the first page number, and the
number of pages of the segment wired by the request.

On any wire request, the first order of business is to check
if this request is already satisfied by a previous request which
has not yet timed out. The data table is locked. The request
entry corresponding to the request index supplied by the caller
(if nonzero) is inspected. If the entry agrees with the
arguments given by the caller (i.e., the fields "astep", "np",
and "fp" in the request entry are identical to the values
computed from the caller's argumentR), and the entry is in the
timing-out queue, it is threaded out of this queue and into the
in-use queue. The pages represented by the entry remain
abs-wired, the table is unlocked, and control returned to the
caller. If the entry agress with the values supplied in the
call, but it is in the in-use queue, or if it is inconsistent
with the supplied values and is in the timing-out queue (i.e.,
pages are shared but not coincident) , the tables are unlocked and
an error is returned. If the entry is free or does not agree
with the call, a new entry is allocated, and the caller's request
index set to the index of this new entry. The entry is then
threaded into the in-use queue, the table is unlocked, and the
page tables are locked. The requested pages are abs-wired into
the first contiguous block of abs-usable memory large enough to
satisfy the request. The page tables are temporarily unlocked
while the process .waits for pages to he physically read from
secondary storage. The page tables are unlocked and control
returned to the caller when all pages are wired.

At unwire call time, the caller's request index is assumed
to be correct. The data table is locked. The request entry,
which should be in the in-use queue, is threaded into the correct
place in the timing-out queue, and the "unwire time" in it is set
to the current clock time plus the given delta. The data table

•

MTB-074 Page 13

is unlocked, and control is returned to the caller.

A variable is kept which contains the "unwire time" of the
head of the timing-out queue, or a very large number if the queue
is empty. The traffic controller polling mechanism will call
iobm$time out if the clock passes this time and the data table is
not already locked. That is, if the data table is already
locked, iobm$time out will not be called. At that time, the
following conditions exist: The traffic controller is unlocked,
the AST is not lockable, nor are directories, and page faults are
prohibited. The page tables, however, are lockable. When this
entry is called, the clock is checked against the unwire time in
the head of the timing-out queue. If the clock is less than the
time in this entry, iobm$time out returns. Otherwise, all
entries in the timing out queue Whose unwire time has passed are
processed and freed. The variable interrogated by the traffic
controller is reset to the time in the new entry at the head of
the timing-out queue. The page tables are locked, the relevant
pages unwired, the page-has-been-modified bit set in each PTW,
and the pages tables unlocked.

The iobm$force unwire entry scans all timing-out queue
entries for requests involving the segment whose AST entry
pointer was passed in the call. All such entries are forcibly
timed-out at this time, unwiring memory and freeing request
entries. The in-use queue is also scanned. If any entries
corresponding the this buffer segment are found, an error is
indicated.

