
MULTICS TECHNICAL BULLETIN MTB-106

Date: July 30, 1974

To: Distribution

From: Jeff Broughton

Subject: A New Symbolic Debugger

The current system debugger, debug, is not well suited for
use by the unsophisticated user. It is very much machine
language oriented and has a confusing and error prone syntax. In
addition, it is deficient in its handl ine of include files, quick
blocks, and certain data types. Probe is intended to be more
simple to use and to deal with the constructs of thP user pro~r~m
in a more straightforward way. Notable differences between it
and debug are:

1) Probe cannot modify or examine code.

2) Breakpoints are implemented in such a manner that an
active invocation of probe need not be on the stack for
a break to occur.

3) The syntax for breaks is potentially far more flexible.

4) Quick procedures and blocks, as well as normal beyin
blocks are recognized in a stack trace. Support
procedures are excluded Cat the user's discretion) from
the stack trace.

5) Type checking
assignments.

and conversion is performed i ri

6) Arguments are converted to expected type in a call, if
entry argument descriptors are present.

7) A wider
complex,

There will
Multics Library.

range of constants,
Is supported.

including decimal and

soon be a version available for use in the
Comments are welcome.

Due to a bug in the runtime symbol table, the address of
entries in the program being examined cannot he found. As a
result, the "call" and "use" commands currently cannot be used
with those entries. Please report any other bugs you find to me •

•

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

MULTICS PROGRAMMERS-' MANUAL

N.am.e,: probe, pb

probe

Command
01129114

The probe command is a symbolic debugging aid that allows
the user to interactively examine the state of his program.
Commands are prov!ded to displ~y and ~lter the value of
variables, to interrupt a running program at a particul~r
statement by use of breakpoints, to list the soLlrce program, to
examine the stack of block invocations, and to invoke external
subroutines and functions.

In order to debug a program with orobe, the progrRm must
have a standard symbol table that contains information about
variables defined in the proqram and a statement map that gives
the correspondence between source statements and object code. A
symbol table and statement map is produced by the PL/I and
Fortran compilers if the ·11-table 11 option is specified. CA
progr~m can also be compiled with the .at-brief_tableJ• option
which will produce only the statement map and disable the
ability to reference variables.>

To store certain information about programs being debugged,
probe uses a segment in the user-'s home directory called
Username.probe where Username is the user's personid. This
segment is created automatically when needed.

Introdyctiooa

The primary use of probe
execution has been suspended.
ways.

is to
This

examine a program whose
can occur in one of several

First, execution can be interrupted as a result of an error
occurring in the program such as zerodivide or overflow. After
an error message is printed on the userJs console, and a new
command level entered, probe can be called and commands issued
to it to identify the cause of the error.

·econd, the user can, as always, stop a run-away program by
"qui ttil"lg·" •

Third, the user can designate, by use of probeJs break
commands, statements on which the program is to stop and directly
enter probe. A list of commands associated with the break
would then be executed automatically. These commands could print
a variable, tell what line was Just executed~ or cause probe to
read additional commands from the console. In this way, the user
can follow the proqress of his program before an error occurs.

c 1974, Honeywell Information Systems Inc.

I
I

: probe
I ·----
Paqe 2

MULTICS PROGRAMMERS~ MANUAL

In all of the cases above, an active program has been
suspended. This means that variables of all storaoe classes, in
particular automatic, exist and can be displayed~ Probe can
also be used to examine a non-active program - one that has
never been run or that has completed. Used in this manner, probe
can be used to 1001< at static variables, and the program source,
though ·the most common use is to set breaks before actually
running the prooram.

Probe keeps track of a current statement, a current block,
and a current control point. 1he current statement designates a
particular source program statement and is referenced by many
commands. The kl,Jrreot block identifies a procedure; subprogram,
or beqin block whose variables are to be examined. Moreover,i it
specifies a particular stack frame occupied by that block so as
to differentiate between different occurrences of a variable in a
recursively invoked procedure. The current ~ontrol ooint marks
the statement at which execution was suspended in the user's
proqrRm. For convenience~ they will be refered to as the ~ource
pointer, the block gQinter, and the Control DQ.1.ll.t.al'.:9
respectively.

Usages

~robe -<procedure>-

where <procedure> is an optional argument that gives the name of
an entry in which the user is interested. If the procedure is
active, the control and source pointers are set to the last
statement executed, and the block ~pointer is set to the most
recent invocation of the procedure. If it is not active~ then
the control and source pointers are set to point to the entry
statement, and the block pointer designates the outermost block
of the procedure.

If a <procedure> ,is not specified, probe checks if an error
or quit has occurred and, by default, uses the procedure that w;:is
executing. The pointers are set as if the user had specified it
explicitly. If no error has occurred; then probe prints a
message and returns.

To execute a program that contains a breakpoint~ the program
can be called normally from command level, or from within probe
by use of the call or value requests. Note well• for the
breakooint to take effect, proe must be must be invoked at least
once in the process.

When probe is entered as the result of executing a procedure
with a breakpoint set in it, the control and source pointers are

--
1 ' I I

MULTICS PROGRAMMERS" MANUAL : probe :
I I , ___ .

Page 3

set to the statement on which t~ 0 break was set, and the block
pointer to the block that contains that statement.

In general, after an error, quit, or break, things Are set
up by default much as one would expect. The user should,
however, explicitly name a <procedure> when he is interested in
working with a non-active one.

Once probe has been entered,- the user can issue commands to
it in order to examine his program.

Command Syntaxs

The command language recognizes three constructs: simple
commands, command lists, and conditional commands. Loosely, a
simple command is a basic probe request; and a command list is a
list of commands separated by semi-colons <or newlines>. A
conditional command is a simple command or list (surrounded by
parentheses> prefixed by a conditional predicate that controls
when the request is to be performed. Examples follow in the next
section~

r· In the discussion of coml_!lands that follows, meta-langua9e
symbols are used for certain constructs Ce.g. <expression>)~
Their meaning should be apparent from context and from examples
given. A c~mplete discussion can be found later in this
document.

probe MULTICS PROGRAMMERS" MANUAL

Page 4

Basic ~m.aruis.

value, y;

value {<e~pre~sion>l<cross section>}

Output on the console the value of <expression>. The value
request allows the user to display the value of variables,
builtin functions such as addr and octal, and the value returned
by an external function.

value var
value p -> a.bCJ>.c

·Value addr Ci>
value octal Cptr>
value function (2)

Array cross-sections can be displayed by specifying the upper and
lower bound o.f the cross-section as follows•

value array CJ •5, 1)

which would print arrayCl 91 >, arrayC2;·1 >;· ••• ,· arrayC5, 1>. More
than one dimension can be iterated; for instance ac112;112> would
printi in order,- ac1;1>~ aCl,2>, aC2,1>; aC2~2>.

l..e.1, l

let {<variable>l<cross section>} =·<expression>

Set the <variable> specified to the value of the <expression>.
If the types are not the same, conversion is performed accordinq
to the rules of PL/I. Array cross-sections can be used with the
same syntax ~s in print. Note that one may not assign one arrAy
cross-section to another~ ·

let var = 2
let array C2,3) = i + I
let p -> a.bC1s2).c = 10b
let ptr = null

Warning• because of compiler optimization; the change may not
hAve immediate effect in the proqr~m.

I I
I I

MULTICS PROGRAMMERS-' MANUAL I probe :
I I , ____ ,

Page 5

J;QQtinue, .'-

continue

Cause probe to return to its caller. If entered from command
level, probe returns to command level. After a break, the user's
program is, in effect9 restarted. To abort a debugginq session,
the quit button must be used.

call <procedureCC<expressionC,<expression>J ••• J>

Call the subroutine with the arguments given. If the procedure
has descriptors that gives the tyoe of the arquments expected,
the ones given are converted to the expected type; otherwise,
they are passed without conversion. The print request can be
used to invoke a function; with the same sort of arqument
conversion taking place. Note• if the procedure has no
arguments, a null argument list,~<>", must be qiven~

call sub c.uabc"~ p -> p2 -> bv, 250, addrCJ»
call sub_noargs ()
print function C 11 010·"b)

goto <label>

Cause an exit from probe and a non-local goto to the statement
specified.

qoto label_var

ooto action C3>
ooto 29

goto $110

qoto Sc, I

- transfer to value of label
variable

- transfer to label constant
- transfer to statement on line 29

of current proqram
transfer to line labeled 110 in
the fortran program

- transfer to the statement
following the current statement

Warning• because of compiler optimization, unpredicatable results
may occur.

I
I

: probe

Page 6

MULTICS. PROGRAMMERS·' MANUAL

Source ~mmands

source, ~

source Co. l

Directs one or n statements beoinning with the current statement
Ci. e. the source pointer> to be printed. Note 1 only executable
state~ents for which code has been generated can be listed;
however, if several statements are requested, intervenino text
such as comments and non-executable statements is included in the
output.

gosit1on, ~

position C<label>l
position {+:->n

Set the source pointer to the statement indicated or to plus or
minus o executable statements relative to the current stat~ment.
If no label or offset is given then the statement designated by
the control pointer is assumed.

position label
oosition action C3)
position 2-14

~osition +2

oosition -5

- set the source otr to label·• •••
- to actionC3) 1 •· ••

- to statement on line 14 of file 2
of the program

- move forward 2 statements in the
source

- move back 5 statements

In addition, the position command can be used to search for an
executable statement that contains a specified strino, and if
found set the source pointer to th~t statement:

oosition "<string>-"

The search begins after the current statement and continues
around the program as in the editors edm and qedx. Note 1 beci::wsa
of reordering of statements by the compiler, which, among other
things, moves subprograms to the end, the seArch may not
necessArily find thinqs in the sam~ orrler as one would expect
from A source listing of the progr~m.

nosition "write (6,10) 11 - loc!"ltP. the st~tement in
oroqn'im

- locate str = "a position "str = ""a"
oosi t ion "q+2·11 ; source - locate and print the statement

the

MULTICS PROGRAMMERS·' MANUAL probe :
I I ·---·

Page 7

!ita'-k, .sk

stack fC!, JnJ Call]

Trace the stack backward from the ith frame for n frames. If no
limits are given, the entire strick is traced. The tri'l.ce consists
of a list of active procedures and block invocations <includina
quick blocks) beginning with the most recP.nt. In Addition to the
name of the block, A frame or level number is aiven, AS is the
name of any conditions raised in the frame.

stack
stack 3

stack 3, 2

- trace the whole stack
- trace the three most recent

fn:1mes
- tr~c~ th 3rd and 4th frames

Normally, system or subsystem support prot~dures will not be
included in the stack trace. If desired, they may be included by
specifying "all".

stack all
stack 3, 5 a 11

use [<block>]

Selects a new block or procedure to be examined. If no <block>
is given, then the block oriqinally used when probe was entererl
is assumed. The block pointer is set to the <block> soecified so
that variables in that block cnn be referenceo. In addition, the
source pointer is set to the last statement execute~ in the
block; in this way, the point at which the block exited can be
found with the help of the source command. Acceptable <block>s
include&

<procedure>
<label>
level i
- n

Here <procedure> is the name of a procedure whose frame is
desiredi its usage is essentially the same 85 if used on the
command line. A <label> denotes the block thAt contains the
statement identified by the label nr line number -- for in5t~nce,
the label on n beain statement denotes thnt benin block. If the
<label>s block is not active, the source pointer is set to the

probe MULTICS PROGRAMMERS-' MANUAL

Page A

statement specified. ·11 level 1·11 uses the 1th block frame from a
stack trace. ~•-n·u uses the nth previous instAnce of the current
block, allowing one to move back to a previous recursion level.
(If more frames are requested than actually exist, the last one
found is used.)

use sub
r.,Jse label
use level 2
use -I

use -999

- use block procedure sub occupies
- use blQck that contains labels
- use second frame in stack trace
- use previous instance of current

block 1

- use last Coldest) instance

Note: when a level is specified, the last trace mode specified
<support procedures included or excluded) is used to find the
level requested •

.s,ymbol, s.b

symbol <identifier>

Display the attributes of the variable specified and the name of
the block in which its declaration is found. If the variable has
variable size or dimensions, an attempt is made to evaluate the
size or extent expression; if the value is not available, then
"*" is used instead. ·

where, m
where [source:blockf controlJ

Display the current value of one or all of the Po-inters. Source
and control qiv~ the statement number of the corresponding
statement. Block gives the name of the block currently being
used; if the block is active, its level number is also given.

where - oive value of all three pointers
where source - give the value of the source

pointer

-

MULTICS PROGRAMMERS·' MANUAL : probe :
I I ·-----·

P.::ige 9

Break rl"lmm.an.d.:2

before [<lBbe.l>J[1 {<commAnd>: (<command list>)}]

Set A breakpoint before the statement snecifie0 by <!Abel> and
cause the commandCs) aiven to be associated with the breal(. If
no <label> is given, the current statement is assumed. If no
commands are qiven, ·11 halt 11 is assumed. When the running program
arrives at the statement, probe is entered before the statement
is executed, and the commancis are processed .=iutom.=itic11lly. When
finished with the commands, probe returns, and the nroqram
resumes at the. statement at which the breal< was set. In effect,
the user can Jt insert" probe commands into his proqram.

before 1 <value var; value var2 >

before quicks value x

before

- set a break before the
st;:itement
set a brea~ before the
labeled quick
set a break with the
command before the
st.,tement

current

stAtement

"halt"
current

Note that the command list may extend Across line bound.9ries if
ne.cessary •

.a..tilU: ' .a
nf ter [<label>][1 {<command>: C <command 1 i st>)} J

is the same as before except that the break is set after the
statement designated. This means that the command list is
interoreted after the statement has been executed. If the
statement branches to another location in the proqram, probe is
n.o.:t. entered. The difference between settinq a break after one
state~ent and setting another before the next is that a transfer
to the next statement causes a break for the before CAse but not
for the after case.

bal..t., b

helt

Causes probe to stop processing its current inout and read
comma~ds from the console. A new invocation of probe is created
with new pointers set to the values at the time 11 hril t·u WAS

executed. It is of primary use ris oc:1rt of a break command list

probe MULTICS PROGRAMMERS' MANUAL

Paqe 10

as it enables the the user to enter commands while a orogra~ is
suspended by a break. In effect, he can halt a running pro~rarn.
A subsequent continue command causes probe to resu~e ~hat it was
doina before it stopped -- for instance, finish a brea~ command
list and return to the program. The command:

before 291 halt

causes the program to halt at statement 29 and allows the user to
enter probe commands. Continue would restart the proqrRm.
Simil;:irly:

after: (value a; halt; value b)

causes the value of a to be printed before the program halted;
later, After the user entered a "continue" comml'.lnd, the vAlue of
b would be printed, ;:ind the execution of the oroqn=1m resumed.

reset
reset {At:after:before} <label>
reset <orocedure>
reset *

Delete
deletes
breaks
can be
in All

breaks set by the before An F1fter comm.=:inds. Just ,11 reset 11

the last break that occurred; the <label> form deletes
set before and/or after a statement; <!Jrocedure> 1md 11 * 11

used to reset all the breaks in a seqment, and all bre~ks
segments, respectively.

reset - delete
reset at 34 - delete

after
reset ;:ifter 34 - delete
reset sub - delete
reset * - rlelete

status
status {at:after:before} <label>
status <orocedure>
status *

the current break
brer:iks set before and

34
the break set after 34
all breflks in sub
Fl 11 Im own bre;:iks

Give information ~bout what breaks have been set. The scooe of
the n~quests is similar to ·11 reset 11 :

MULTICS PROGRAMMERSJ MANUAL

status
status before label

status sub

status *

pause,· L2.a

pause

probe
I I ·----·

Page II

- lfst the current break
- list the break set before the

st~tement at label•
- tell what breaks have been set in

sub
- tell what procedures hAve breal(s

set in them

Equivalent to "halt; reset" in a break command list, it c~uses
the procedure to execute a break only once stopping9 then
reseting the break •

. ..S.t.fU2, ..S

step

Set break consisting of npause" after the statement following the
control pointer and ncontinue". It enables the user to step
throuah his program one statement at a time. Note• if a
statement transfers elsewhere, the break does not haooen until
sometime later, if ever.

M,iscellaoeQ!J.S. Commands

mode {brief:long}

Turn brief message mode on or off. In brief mode, most messages
aenerated by probe are much shorter and others are surpressed
altogether. The default is long.

JU.a~' .e.
execute "<string>n

Pass <string> to the command processor to be executed as a normal
Multics command.

I
I

: probe MULTICS PROGRAMMERSJ MANUAL
I I ·----·
Prige 12

C,.Qnditjonal E.I:edicates

ll

if <conditional>: {<simple command>:C<command list>)}

The command(s) are executed if the <conditional>
true. The <conditional> can be of
<expression><op><expression> with <=, <, =, ·=, >,
<op>s.

if a < ba let p = addr <a>

evaluates to
the form

>= allowed as

This predicate is of most use in a break command list as it can
.be US8d to cause a conditional stops

before : i f z = 11 I 0 11 b: s top

would cause the prooram to stop only when z = 11 10'"b.

'dhi le; !ti

while <conditional>• {<simple command>:C<command list>)}

Allows iteration by executing the command(s) as lonq as the
<conditional> is true.

while p =null• (print p -> r.val; let p = p -> r.next>

,..

I I
I I

MULTICS PROGRAMMERS-' MANUAL : probe :
I I ·----·

P;:iqe 1 3

E..x.Qressionsa

Allowable <expression>s include si~ple scalnr variAbles,
constAnts, and probe builtin functions. The sum and difference
of computational v~lues can Also be used.

Variables can be simple identifiers, subscripted references,
structure qualified references, and locator qu~lified references.
Subscripts are also expressions. Locators ~ust be offsets or
pointer variables or constants.

runn ino_ tota 1
salaries Cp -> i - 2>
A.bC2>.cC3) or a.b.cC2,3) etc.
x.y -> var

pointer constants Are
either decimAl or binAry,
Also, octal numbers are

Arithmetic, string, bit, and
supported. Arithmetic constants can be
fixed or float, real or complex.
permitted as abbreviations for binary inte?ers Ce.q. 120 = IO>.

-123
lOb

45.37
4.73el0

2.1-0.3i
123456700

Character and bit strings without repetition factors are allowed.
Character strinqs can include newline char.~cters. Octal strinas
can be used in the place of bit strinqs Ce.ry. "123"o =
11 00101001 }Jib).

II abc-11
uquote 1111 instrinq 11

·11 101 0 11b
11 01234567 11 0

Pointer constants are of the form• seq#:word#Cbit#). The seg#
and word# must be in octal. The bit# is optional and must be in
decimal. They can be used as locators.

214:5764 232:7413(9)

Three builtin functions are provided by probes addr, null,
and octal. The addr function takes one araument and returns a
pointer to that aroument. Null, taking no Arouments, returns a
null pointer. They are the same ~s in PL/I. ThP, function oct~l
acts very much like PL/JJs unspec builtin in that it treats its
argument as a bit strino of the same length as thP, raw data
value, and can be used in a similar manner as a psuedo-vnriable.
However, when used in the print command the value is disclayed in
octal. <Data items not occupyina a multiple of three bits will
be padded on the Ligbt.>

probe MULTICS PROGRAMMERS" MANUAL

Page 14

Label References•

~ <label> identifies a source program statement and can be a
label variable or constant; a line number as it appears on a
source listing Ci.e. C!.i.J..e.-lllrut>,- or a special st1=1tement
designator• Sc representing the Mcurrent statement", Sb
representing the statement on which the last break occurred, and
Soumber for fortran labels. An optional offset of the form "•~'
is also allowed.

label
label_ var

1 7
3-14,2
$b

Sc ,-1
$100

- statement at label 1 •••

statement to which label_var is
set

- stF.ttement
- statement

statement
occurred

on line 17 of proqram
2 on line 14 of file 3
at which last break

- statement after current statement
- fortran statement labeled 100

Generally, a label can also be the name on a procedure or entry """'
statement. -

Procedure References•

A <procedure> is considered to be a reference to an entry
variable or constant. External names can be used.

Evaluation of Variable Referenc~•

When a variable is referenced in a command,' probe attempts
to ev,qluate it by first checking for an applicable declaration in
the current block, and if necessary in its parents. If not
found, the list of builtin functions is searched. Finallyi when
the context allows a <procedure>; a search is made following the
user"s search·rules.

The block in which to look for a variable can be altered by
the use command that sets the current block~ For example; if
"value var" displays the value of var in the current block,- then
~use -IJ value var" displays the value of var at the previous
level of recursion. A shorthand is available for referencinq
variables in other blocks - an optional block specifications ·

<variable> i<block>l

I I
I I

MULTICS PROGRAMMERS-' MANUAL : orobe :
I I ·--·

Paqe 15

where block is the same as in t.he use command. The use of
<block>s in this manner does not alter the block pointer.

varC-ll
abcCother_blockl
xyzC39l

n.mClevel 41
qC2Hsub1

- looks for previous value of var
- 1 ooks in Jtother _bl ock-11 for abc

looks in block that contains line
39

- looks in block at level 4
- looks in procedure sub

A block specification can be userl on an identifier anywhere the
variable could be used. However, a block specification on a
label or entry constant is ignored unless 1) the relative <-n>.
format is used, and 2> the label or entry is itself used in a
block specifcation. In such a case; it is taken to mean the nth
previous instance of the block designated by the label or entry;
that is, 11 varCsubC-2lJ" references var in the second previous
invocation (third on the stack) of sub.

probe
I ·----
PRge 16

Sample Debuggiog_S§ssjoo•

MULTICS PROGRAMMERS""' MANUAL

The following is a sample attempt at debugging a proqram.
It is not claimed that the proqram does anything useful; or that
this is the best way to debuo, the proaram. The purpose is merely
to give an example of how certain orobe commands can be applied.
A listing of the source of the program, test, is given on the
next page; the sample outout follows with ~>n used to denote
lines typed by the user.

In order to use probe to debug a proqram,' the prografTI must
be compiled with the ~-tAble~ option. Generally, the user should
generate a symbol table for any program that he does not have
good reason to believe will work.

On line 5, the user calls his program; noticing that it
seems to be loopinq, he stops it by hitting the quit button.
After the user invokes probe9 it responds by telling that the
internal function ~fun" was executing line 38 when interrupted.
Since the source pointer was automatica Uy set to thi:it line, A

request to print the current statement with 11 source .. ', displays
the source. The statement causing an error could be displayed in
a similar manner.

The stack command was then used to see what called what.
The ouput shows that procedure ·11 test" was called from command
level, And then, in turn, called fun. While fun was executing, a
quit occured and established a new command level. To determine
whether fun was called from line 17 or line 27 of test; the use
command is used to find the point at which test exited~ Since
"use~ also sets the block pointer Rt the same time, the user can
check if "s.num" has the correct value with the VRlue command.

TI"\e user decides that it would be worthwhile to trace the
value of i. Rather thRn recompiling his program with a put
statement added in a strateqic location, probe allows him to set
a breRk containing a value command to accomplish the same thing.
Wantina to set the break after the do statement on line 16, the
user se~rches for it with the posit ion command. "source·" is used
to verify that the correct line w.=is found. The continue command
then causes probe to return Cto command level>.

To abqrt the suspended
release command to Multics. If
quitting, he could not have
what happened.

proqrRm test, the user gives the
he hAd done this just after

used probe to find out much about

I I
I I

MULTICS PROGRAMMERSJ MANUAL : orobe :

1
2
3
4
5
6
7
8
9

10
11
1 2
1 3
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

I I ·-----·

tests procedure;

declare

Ci, J> fixed binary,
1 s structure based (p),

2 num fixed binary,
2 b Cn refer Cs.num>> float binary,

p pointer, n fixed binary,'
sysprint file;

n = 51
allocate s set Cp>;

do i = 1 to s.num;
s. b C i > = fun C i , I > ;

end;
put skip list Cs.bJ;

do .1 = s.num to 1 by -1;
s.bCJ> =fun C-j, -I J;

end;
put skip listCs.bJ;

return;

Paqe 17

fun: procedure Cb, iJ returns (float binary);

declare
Cb, i) fixed binary;

if b = 0
then return Cl>;
else do;

b = b - i;
returr'l <2*-*b +fun Cb, i));

end;

end fun;

end test;

: rrobe MULTICS PROGRAMMERS' J..{ANUAL

Page 18

.The program is started once aonin, but now, after each time
line 16 is executed, the break occurs and probe displnys the
value of i. Clearly, it is not being incremented as it should.
Since this approach is not producina any useful information, the
user ~borts the program and trys to delete the break. The status
command is used to tell what breaks have been set in the seament
test, ~nd then to see the break set. The breal< is then deleted
with the reset command. Note that if there had also been a
.u Break before 16 11 , then the command ·"reset at 16'1 would have
deleted both.

The user next decides to see what is goinq on in fun, so he
sets a break to halt it every time it is invoked. By looking at
the listinn, he knows that the first statement in fun is on line
34, so he Mpositions" the source p6inter to th~t statement and
sets a break to halt the proqram. To accomplish the same thing,
"be fore 34: ha 1 t·11 could have been used.

The program halts when the brer!k before 1 ine 34 is re.9ched.
The user displays b And i getting the values he expected. The
where command is Also used to see what the state of things is.
Continue ("c"> restcirts fun which calls itself recursively and
stoos again. The stack command Cshowinq the last five frames)
verities that fact. The user displays the b in the current
instance of fun Cat level 2) and in the previous one Cat level
3). Mistakenly expectinq the b's at different levels to be
different, he qets suspicious. The vari;:ibl e 11 fJ' has the value
expected, but the symbol command shows that it is wrong one
the parameter to fun, not the loop index. To get the correct
one, he must look in the frame belonqinq to the procedure test.
This "i-'' has been set to zero. The user then realizes his error.
The function is modifying its argument C the loop index 11 i·" > on
line 37. Done with debuoging the orogram, .ureset" is used to
delete the currently active break Cthe one that just occurred>,
and the program is aborted.

MULTICS PROGRAMMERS1 MANUAL

1
2
3
4
5
6
7
8
9

> pll test -table
PL/I
r 1248 3.211 28.336 280

> test
(quit)

QUIT
r 1250 5.371 6.702 52 level 2, 10

> orobe
Condition quit raised at line 38 of fun.

> source

I I
I I

: probe :

10
1 I
12
13
14
1 5
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

return < 2 ** b + fun < b , i)) ;
> stack

1 command_processor_
2 release_stack
3 unclaimed_sional
4 reRl_sdh-'
5 return_to_rinq_O_
6 fun
7 test
8 command_processor_
9 listen_

10 process_overseer_
11 real_init_admin_

> use level 7
> source

s. b < i> = fun C i, I >;
> value s.num

5
> posit ion -11 i = 1 11 ; source

do i = 1 to s.nu~;
> after: value i
> continue

r 1252 1.375 16.394 354 level 2, to

> release
r I 252 • l 26 • 9 22 I 9

> test
I
1
1
I

Cquit>
QUIT
r 1252 3.069 .650 25 level 2, 12

quit

probe MULTICS PROGRAMMERS·' MANUAL
I I ·---·
Page 20

49 > release
50 r 1253 .092 .937 20
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

> probe test
> status test

Break after line 16.
> status after 16

Break after line 16: value i
> reset at 16

Break reset after line 16 of test.
> position 34
> source

if b = 0
then return Cl>;

> before: stop
> continue

r 1255 .781 12.356 333

> test
Stopped before line 34 of fun.

> value b
1

> where
Current line is line 34 of test.
Using level 21 fun.
Control at line 34 of fun.

> value i
1

> c
Stopped

> stack 5
1
2
3
4
5

> value b
0

before line 34 of fun.

break
fun
fun
test
command_processor_

> value b [- I]
0

> value i
1

> symbol i
Attributes are: fixed binaryC17,0> aligned parameter.
Declared in• fun.

> use test
> value i

0

-

I I
I I

MULTICS PROGRAMMERS·' MANUAL : !"'robe :
I I ·---·

PA<1P 21

97 > reset
98 Break reset before line 34 of test.
99 Cqui t)

100 QUIT
101 r 1307 4.870 64.788 1544 level 2, 18
102
103 > release
104 r 1307 .076 .992 31

: probe

P;:ige 22

Summary of Requests:

after a

beforf3 b

call cl

cont inuP- c

execute e

goto g

halt h

if

let l

mode

pause pa

position ps

reset r

source SC

stack sk

status st

step s

symbol sb

use u

value v

where wh'

while wl

MULTICS PROGRAMMERS·' MANUAL

Set a break after a statement.

Set a break before a statementc

Call an external procedure.

Return from probe.

Execute a Multics command.

Transfer to a statement.

Stop the prooramo

Execute commands if condition is
true.
Assign a value to a variable.

Turn brief messaae mode on or off.

Stop a proaram once.

Examine a specified statement or
locate a string in the program.
Delete one or more breaks.

Display source statements.

Trace the stack.

Display information about breaks.

Advance one statement and halt.

Display the attributes of
variable.
Examine the block soecif ied.

Oisplay the value of a variable.

a

Display the value
pointers.

of prob~

Execute commands while
true.

condition is

