
MULTICS TECHNICAL BULLETIN MTB_321 page 1

To: Distribution

From: J. Falksen

Date: January 18, 1977

Subject: Report Generator Language

INTRODUCTION

The Report Generator Language (RGL) is a lanugage to describe
reports which are to be created. The result of the compilation
is a report command. Executing it then causes the desired
reports to be created.

The report command can have parameters if needed.

Please send comments or suggestions to:

on System M, or to
Falksenj.Multics

J, Falksen, HIS, K-28
P 0 Box 6000

Phoenix AZ 85005

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

MULTICS TECHNICAL BULLETIN MTB_321 page 2

Overview

Report Generator Language is a programming language designed to
aid a person in producing formatted reports. A single report
command can produce one or more reports. The destination and
even existance of any of the reports may be varied according to
conditions.

A report is basically described in 3 parts; 1) what is the input
like, 2) what is the output like, 3) what phases of processing
are necessary.

Input can have fixed or variable
circumstances fields may be optional.

fields; under certain

Output is broken into pages of user defined length.
have headers and footers, that is, data which appears
after the pages of formatted data. Pages can have
footers, that is, data which appears at the top and
each page.

Reports
before
headers

bottom

can
and
and
of

The data can be broken into blocks via control breaks. One or
more fields can be designated as control fields, the order of
specification being the priority of the break. A control break
occurs when the data in a control field differ from the data in
the same control field from a previous record. When a break on a
certain level occurs, this forces a break at all lower levels .•

Each break level can have a header and footer, that is, data
which appears before and after each block.

Each record of input can produce one or more lines of data in one
or more reports.

The processing to be done on the data is described in one or more
phases. The final phase ends with a PRINT request. All other
phases will end with a HOLD or HOLD/SORT request. A phase
represents one pass thru the data.

The simplest form of report will just do a PRINT. A more complex
form might pass thru the data once, accumulating totals of field
X, Y, and Z. Then a second pass thru the data would print the
record, including X, Y, and Z, and indicating what percentage
each of them is of the total.

Or the data may only need to be sorted and then printed.

Here is an example of a very simple, unconditional report. It
sends its output to user_output and uses all default field sizes.

MULTICS TECHNICAL BULLETIN MTB_321 page 3

---DECLARE 1 INPUT ,
2 country_name CHARACTER DELIMITED
2 capital CHARACTER DELIMITED ",",
2 time_zone CHARACTER (4);

DEFINE 1 REPORT cct,
2 DETAIL d1,

PRINT d 1;

END;

3 LINE,
4 country_name,
4 capital,
4 time_zone;

II II

' '

Now this turns out to be a little too simple; you don't like the
way it looks. The fields are varying in length and so the report
was not columnar. You then can be more specific about the
format.

DECLARE 1 INPUT ,
2 country_name CHARACTER DELIMITED
2 capital CHARACTER .DELIMITED 11 , 11 ,

2 time_zone CHARACTER (4);

DEFINE 1 REPORT cct PAGELENGTH 66
MINLINE 6
MAXLINE 60
ON FILE 11 w_capitals 11 ,

2 DETAIL d 1,
3 LINE,

II II , ,

4 country_name COLUMN 1,
4 capital COLUMN 20,
4 time_zone COLUMN 40;

PRINT d1;

END;

The next example adds sorting and a grand total. This is to
print a report of all the countries which are aligned with the

MULTICS TECHNICAL BULLETIN MTB_321 page 4

United States, indicating their military strength.
----------------------~--

DECLARE

DEFINE

1
2
2
2
2

1
2

INPUT RECORD 280 FILE ">udd>WORLD>wpmf",
country CHARACTER (20) POSITION 200,
cdr_in_chief CHARACTER (24),
mil_no_men CHARACTER (6),
aligned CHARACTER (20) POSITION 12;

REPORT good_guys ON SWITCH "military_",
REPORTHEAD,
3 LINE 24,

4 "ALIGNED MANPOWER" CENTER,
3 LINE +2,

4 (%SUBSTRING(%MMDDYY,5,2)
11 %MONTH
I I %SUBSTRING(%%MMDDYY,3,2)) CENTER,

3 LINE +5,
2 DETAIL d1,

3 LINE,
4 cdr_in_chief,
4 mil_no_men

LET (total :=total+ mil_no_men;),
2 REPORTFOOT,

3 LINE +2
4 "Total number of men:",
4 total COLUMN 30 PICTURE "zzz,zzz,zz9";

IF (aligned EQ "USA")
HOLD country,cdr_in_chief, mil_no_men
SORT country, cdr_in_chief;

PRINT d1;

END;

Sometimes information is to be printed only when it changes.
This is called control break processing.

This report gives the largest cities for all the countries in the
specified input file. Only cities with population greater than
1,000,000 will be listed. Also, only the first 25 for any
country will be listed. The name of the country will be printed
when the country begins and at the beginning of a new page. The
sort includes the capital indicator in such a way that the
capital always sorts first, regardless of the population. The
first line for a country will contain the capital name.

MULTICS TECHNICAL BULLETIN MTB_321 page 5

------------------------------------~----------------------------
DECLARE 1 PARAMETER,

2 cfile CHARACTER (*);

DECLARE 1 INPUT FILE ">udd>WORLD>cities" STREAM,
2 capital CHARACTER (1), /* "*" if capital*/

I* " " if not capital */
2 country CHARACTER DELIMITED ",",
2 city CHARACTER DELIMITED ",",
2 altitute CHARACTER DELIMITED ",",
2 population CHARACTER DELIMITED ",";

DECLARE city_ct FIXED;
DECLARE newpage BOOLEAN;

DEFINE 1 REPORT key_cities ON FILE cfile
BREAK (country),

2 PAGEHEAD,
3 LINE 1,

4 ""LET (newpage:=TRUE;),
2 DETAIL d1,

3 LINE +3 IF (%LEVEL(country)
OR (newpage AND (city_ct LT 25))),

4 country COLUMN 1
LET (newpage:=FALSE;),

4 "CAPITAL: 11 IF (%LEVEL(1)) COLUMN 25
LET (city_ct := O;),

4 city IF (%LEVEL(1)),
4 population COLUMN 60 IF (%LEVEL(1)),

3 LINE IF (NOT %LEVEL(1) AND (city_ct LT 25)),
4 city COLUMN 10 LET (city_ct:=city_ct+1;),
4 population COLUMN 60 PICTURE "zzz,zzz,zz9";

IF (population GT 1000000)
HOLD city
SORT country,capital DESCENDING,population DESCENDING;

PRINT d1;

END;

Here is an example of two reports which are produced in parallel
but which end up in one file serially. The first is a table of
contents with roman numeral page numbering; the second is the
salary listing by department, with arabic pagenumbers, and
showing the average salary of the people working for each
manager.

DECLARE 1 PARAMETER,
2 xxxxx CHARACTER (*); I* output name *I

DECLARE INPUT RECORD 390 FILE ">udd>EMPREC>master>emp1",

MULTICS TECHNICAL BULLETIN MTB_321

2 salary CHARACTER (9) POSITION 230,
2 name CHARACTER (28) POSITION (1),
2 mgr CHARACTER (28) POSITION 350,
2 dept CHAR(6);

DECLARE count FIXED;
DECLARE saltot FLOAT;

DECLARE REPORT body ON FILE xxxxx NUMBER 2
BREAK (dept, mgr) MAXLINE 58,

2 DETAILHEAD dept,
3 LINE O, I* start a new page */

2 DETAILHEAD mgr,
3 LINE +3,

4 ("***** " I I dept I I " *****"),
4 mgr column 30,

2 DETAIL db,
3 LINE

4 name LET(count:=count+1;),
4 salary PICTURE "zz,zz9.00"

LET(saltot:=saltot+salary;),
2 DETAILFOOT mgr,

3 LINE +2,
4 "Average salay of these ",
4 count,
4 " employees is ",
4 saltot PIC "zz,zz9.99"

LET (saltot:=saltot/count;)
4 "·" LET(count:=O;saltot:=O;),

2 PAGEFOOT,
3 LINE 60,

4 %PAGENUMBER() CENTER;

DEFINE 1 REPORT toe ON FILE xxxxx NUMBER 1
BREAK(dept,mgr) MAXLINE 58,

2 RE.PORTHEAD,
3 LINE 10,

4 "CONTENTS" CENTER,
3 LINE +6,

4 "Page" RIGHT,
3 LINE + 1,

2 DETAILHEAD dept,
3 LINE +2 MAXLINE 55,

4 "DEPARTMENT",
4 dept,

3 LINE,
2 DETAILHEAD mgr,

3 LINE,
4 %REPEAT(" .",32) CENTER,

page 6

4 mgr RIGHT, ~
4 %PAGENUMBER(body) RIGHT,

2 DETAIL dt,
3 LINE +O, I* don't want any detail data */

MULTICS TECHNICAL BULLETIN MTB_321

2 PAGEFOOT,
3 LINE 60,

4 %MMDDYY RIGHT,
4 %ROMAN(%PAGENUMBER()) CENTER;

HOLD salary
SORT dept, mgr, name ;
PRINT db;
PRINT dt;
END;

page 7

MULTICS TECHNICAL BULLETIN MTB_321 page 8

Following there are parts which are written in BNF. This BNF is
very simple, there are few "features". There are two operators:

::= means "is defined as"

means "end of rule'', anything following is commentary

So a rule will have the general form
<name> ::= <things> ! comment

An "OR" condition is indicated by multiple definitions of the
same rule name.

<lik>
<lik>

<integer>
* !

must be 0 - 9

This says that the rule "lik" is defined as either an integer in
the range 0 thru 9, or the literal "*"

Rule names are enclosed within "<" and ">''; they are constructed
with a few conventions. These conventions will aid the reader by
giving him some information about the rule being referenced
without looking at the rule definition. The forms are these:

<xxx> <xxx •.• > <xxx
' ••• > <[xxx]> < [xxx .•. J >

<xxx> means that the rule describes an xxx

<xxx ... > means that the rule describes a list of xxx's

<xxx ' ••• > means that the rule describes a list of xxx's
separated by commas

<[xxx]> means that the rule describes an optional xxx

<[xxx .•.]> means that the rule describes an optional list
of xxx's

Words in capital letters represent keywords. The grammar will
never show alternative forms of keywords. These will be shown as
a separate list of abbreviations.

Below only the <xxx> forms will be defined.

Keywords are reserved.

MULTICS TECHNICAL BULLETIN MTB_321 page 9

The input to RGL is a Multics segment. It will be a segment
whose name is zzz.rgl. If an object segment is kept from the
compilation, it will be a report command or I/O appendage named
zzz.

To use the kept object as a command you would say:
zzz arg ••.

To use the kept object as an I/O appendage you would say:
io_call attach STR report_ zzz arg •••
io_call open STR appropriate_output_mode

In order to isolate report generation from all knowledge of I/O
switches. The "report_" I/O switch will be the only interface
between reports and switches. The report command will act as an
"I/0 appendage" to the report_ switch. All report processing
will be done in the appendage; all knowledge of stream and
switch mechanisms will be in report_. report_ will implement
open, put_chars, write_record, and close. Opening modes will be
stream_output or sequential_output.

The I/O appendage is similar to the GSP of the grahpics system.

The input segment has this general form:

<input>

Data Declarations

: := <dcl .. . >
<report .•• >
<exec •.• >
END ; !

The first thing in the source is the declaration section. All
names must be declared before use.

There are 3 kinds of declarations:
parameter, input, data

Parameter Declaration

If the report command needs parameters, this form of declaration
must be used. There can be positional and/or keyword parameters.

MULTICS TECHNICAL BULLETIN MTB_321 page 10

<dcl>

<pa rm>

<parm_spec>
<parm_spec>
<parm_spec>

<parm_spec>
<parm_spec>

<keyword>

.. -.. -

.. -.. -

.. -.. -.. -.. -.. -. . -

.. -.. -

.. -.. -

DECLARE 1 PARAMETER <parm •.. > ;

, 2 <identifier> <parm_spec ••• >

CHARACTER (*)
CHARACTER (<number>)
BOOLEAN

DEFAULT <quoted_str> !;
KEY (<keyword , •.• >)

<quoted_str>

The first 3 <parm_spec>'s are the data type.
specified.

One must be

CHARACTER (*) means that the length will be that of the parameter
given to the report command.

CHARACTER (<number>) means that
specified. The parameter given
truncated or padded as needed.

the length will be that
to the report command will be

BOOLEAN means that the keyword is either absent or present.
has the value TRUE or FALSE.

It

DEFAULT is optional. If it is specified for a positional
parameter, then that parameter is optional. Otherwise, the
report command will give an "EXPECTED ARGUMENT MISSING" message
if the parameter is not supplied. This cannot apply to a BOOLEAN
parameter.

KEY is optional. If it is specified, then the parameter is a
keyword parameter. All keywords must begin with a "-". When
multiple keywords are specified, they represent alternate ways of
supplying the keyword. This must be supplied if the parameter is
BOOLEAN. If the parameter is not BOOLEAN, then the parameter
following the keyword is the value of this parameter.

Examples:

DECLARE PARAMETER,
2 in_file
2 out_file
2 brief

CHARACTER(*),
CHARACTER(*),
BOOLEAN KEY ("-brief","-bf");

DECLARE 1 PARAMETER,
2 stream CHARACTER(*) KEY ("-os")

DEFAULT "user_output";

When calling the report command, the positional parameters need

MULTICS TECHNICAL BULLETIN MTB_321 page 11

r not be first. The first non-keyword is the first positional
parameter, etc.
These parameter lists are equivalent:

from_s to_s -bf
from_s -bf to_s
-bf from_s to_s

Input Declaration

The input to be used must always be specified. It can be from a
file or I/O switch.

<dcl>

<input_ctl>
<input_ctl>
<input_ctl>

<input_ctl>
<input_ctl>

<ifld>
<idcl_spec>
<idcl_spec>
<idcl_spec>
<idcl_spec>
<idcl_spec>
<idcl_spec>
(ifld>
(ifld>

RECORD

.. -.. - DECLARE 1 INPUT <[input_ctl ... J>
<ifld ••• > ; !

RECORD <number>
RECORD ! ;

::=STREAM !

I • . '

. . -.. -.. -. . -

.. -.. -.. -.. -.. -.. -

. . -.. -

.. -.. -. . -. . -. . -.. -

FILE <cexp> !;
ATTACH <cexp>

, 2 <identifier> <idcl_spec> !
CHARACTER (<number>) POSITION
CHARACTER (<number>) OPTIONAL
CHARACTER DELIMITED <quoted_str>
CHARACTER DELIMITED <quoted_str>
FIXED !;
FIXED (<number>)
, 2 FILL (<number>) !
, 2 FILL (<number> <number>)

<number>

I • . '
OPTIONAL

The input is made up of fixed length records which have a
specified byte~length.

STREAM

The input is an ASCII file with records separated by NL
characters. This is the default.

FILE

The source will be gotten by directly referencing the segment
<cexp>, a relative pathname.

I • . '

MULTICS TECHNICAL BULLETJN MTB_321 page 12

ATTACH

The source will be gotten by attaching a switch. <cexp> is the
attach description which is used.

If neither FILE nor ATTACH is given, then the report cannot be
run as a command. When the report is run as an I/O appendage,
the FILE/ATTACH specification is ignored.

CHARACTER

CHARACTER (<number>) means that the specified number of bytes
will be taken as a character string.

POSITION <number> means the field will begin at a specified byte
location in the record. If not specified, the default is to
begin at the byte following the previously declared field.

OPTIONAL means that the field may not exist. If the record ends
before this field, it is not an error. This obviously can apply
to STREAM input only.

CHARACTER DELIMITED

DELIMITED means that the field is a string delimited by a
character string. The delimiter can be more than one character
long.

OPTIONAL means that the field may not exist. This can happen one
of two ways. Either the record runs out before the field is
reached, or a delimiter is encountered which is the delimiter of
a later field.

FIXED

FIXED means that the data is binary data. Can only be used with
RECORD. This field will occupy 4 bytes of the record.

FIXED (<number>) means that the data is
<number> is the precision of the field.
<number>+1 bits starting ar the current bit.

FILL

not a word long.
It will occupy

FILL (<n1>) means that <n1> bytes of record are to be skipped.

FILL (<n1>,<n2>) means that <n1> bytes and <n2> bits are to be
skipped.

Data Declarations

MULTICS TECHNICAL BULLETIN MTB_321 page 1 3

Any data which is used within the report command must be
declared. Various data types are available.

<dcl> . . - DECLARE <identifier> <dcl_spec> . .. - '
<dcl _spec> FIXED I • . '
<dcl_spec> FLOAT I • . ' <dcl_spec> PICTURE <quoted_str>
<dcl _spec> EDIT <quoted_str> !
<dcl _spec> CHARACTER (<number>)
<dcl _spec> .. - CHARACTER (<number>) VARYING .. -
<dcl _spec> BOOLEAN
<dcl _spec> RETURNS (<dcl_spec>) I • . '
<dcl_spec> TABLE (<init>) I • . '
<dcl _spec> TABLE (<init>) VARYING

FIXED

This is like PL/I fixed bin.

FLOAT

This is like PL/I float dee.

PICTURE

This is a character string, with conversion specified when
assigning to it. Like PL/I pictured data.

EDIT

This is a character string, with conversion specified when
assigning to it. This is somewhat like an ioa_ control string,
with these controls:

:nc insert n characters from the sending field
nx insert n spaces

AA insert a A character
Anf move forward n characters in sending field
Anb move backward n characters in sending field
Ab move to beginning of sending field

For example: you could edit a phone number with
EDIT "(A3c)A3c-A4c"

CHARACTER

This is like PL/I character.

CHARACTER VARYING

This is like PL/I character varying.

MULTICS TECHNICAL BULLETIN MTB_321 page 14

BOOLEAN

This is a binary-valued element. It can contain TRUE and FALSE.
It is similar to PL/I bit(1) aligned.

RETURNS

This specifies a function. Th~ attribute can be any listed proir
to this point. This is like PL/I

entry options(variable) returns(xxx).

TABLE

This specifies an element-to-element transformation which is to
be done. All elements of the table are of a fixed length, this
being the maximum of the values specified.

TABLE VARYING

This specifies an element-to-element transformation which is to
be done. Each element has whatever length it is initialized to.
There are 4 kinds of transformations which can be done.

<init>
<initaa>

::= <initaa .•. > !
::= <number>-> <number>

An arithmetic to arithmetic transformation can be requested. For
example:

TABLE (6->1 4 -> 2 1->3)

<init>
<inital>

::= <inital. •. > !
::= <number>-> <quoted_str>

An arithmetic to character transformation can be requested. For
example:

TABLE (1->"first" 2->"second")

<init>
<initla>

::= <initla ... > !
::= <quoted_str> -> <number>

A character to arithmetic transformation can be requested. For
example:

TABLE ("JAN""'."'>1 "FEB"->2 "MAR"->3)

MULTICS TECHNICAL BULLETIN MTB_321

<init>
<initll>

: := <initll. •• >
::= <quoted_str> -> <quoted_str>

page 15

A character to character transformation can be requested. For
example:

TABLE ("CPL"->"Corporal" "PVT"->"Private") VARYING

Report Definition

There must be at least one report defined. A report definition
looks very much like a PL/I structure, with various line groups
specified at level 2.

A report can be made up of up to 7 kinds of line groups. The
line groups are ordered as they are to appear, i.e. headings
before details.

<report>

<report_ctl>
<report_ctl>
<report_ctl>
<report_ctl>
<report_ctl>
<report_ctl>
<report_ctl>

<output_sel_OR>
<output_sel_OR>

<output_sel>
<output_sel>
<output_sel>

PAGEWIDTH

::=DEFINE 1 REPORT <identifier>
<[report_ctl •••]>
<[heading •.•]>
<detail ••• >
<[footing •.•]>

.. -.. -.. -.. -. . -.. -.. -.. -.. -.. -. . -. . -

.. -.. -

!
PAGEWIDTH <number> !;
PAGELENGTH <number> !;
MINLINE <number> !;
MAXLINE <number> !;
BREAK ((identifier ' ••. >)
ON <output_sel> !;
ON (<output_sel_OR>)

I • . '

.. -.. -
<output_sel> !;
<output_sel_OR> IF (<expr>)

OR <output_sel> .. -.. -.. -. . -.. -.. -
FILE <cexp> !;
FILE <cexp> NUMBER <number>
SWITCH <cexp>

I • . '

This specifies the maximum print position which can be used in
the report. The default is 65.

PAGELENGTH

This specifies the number of lines on a page. The default is 66.

MINLINE

MULTICS TECHNICAL BULLETIN MTB_321 page 16

This specifies the first line on a page to be used. The default
is O, however the PAGEHEAD can cause other action.

MAX LINE

This specifies the last line on a page which can be used. The
default is PAGELENGTH, however the DETAIL and PAGEFOOT can cause
other action.

BREAK

This specifies that control breaks are desired. If this is
specified, then DETAILHEAD and DETAILFOOT can be used. The
fields specified are the control fields. They are listed in
decreasing order. %LEVEL(1) refers to the first field, %LEVEL(2)
the second, etc. The default is no breaks.

ON

This specifies where the report is to go. It can be written to
an I/O switch or placed into a segment (MSF). The default is
SWITCH "user _output". If the des tina ti on is a FILE, then it is
assumed that it is for a printer. If the destination is a
STREAM, then it is assumed that it is for a terminal.

Alternatives may be specified for the destination.
last of the alternatives will contain an IF clause.
will be made in the order specified and the first
true will be. taken. If all are false then
(non-conditional) is taken.

Example:
ON SWITCH in_file ii 11_str_ 11

ON (FILE "<<monday>a" IF (%DAY EQ "Monday")
OR SWITCH "di scard_ou tput_ 11)

ON FILE ">udd>m>WORLD>" l l infile

All but the
These tests
one which is

the last

Sometimes it is necessary to produce more than one part of a
report simultaneously, but to want them to end up in one file
serially. A report preceeded by a table of contents is one such
application. To accomodate this, the FILE may specify the NUMBER
option. The numbers specified determine the order they finally
are put into the named file. The filename must be precisely
identical in its definition in order for the match to be made.

Example:
DEFINE
DEFINE

REPORT body ON FILE "monthly" NUMBER 2
REPORT toe ON FILE "monthly" NUMBER 1

MULTICS TECHNICAL BULLETIN MTB_321 page 17

Headings

Headings are placed before the detail information. There are 3
possible kinds.

<heading>
<heading>
<heading>

REPORTHEAD

.. -.. - ' .. - '
2 REPORTHEAD <lines •.. >
2 PAGEHEAD <lines ..• >
2 DETAILHEAD <identifier>

<[detail ctl •..]> <lines ..• >

This is a group of lines which precede the report. It is
processed only once, the first time a detail for the report is
printed. If REPORTHEAD appears before PAGEHEAD, then it will be
like a cover page.

PAGEHEAD

This is a group of lines which are to appear at the top of each
page. The first LINE of this group should contain an absolute
line number.

DETAILHEAD

This is a group of lines which are to appear whenever a control
break occurs on the specified <identifier>. DETAILHEAD cannot
appear unless the BREAK <report_ctl> has been specified. This
will not occur on the %LEVEL(O) break. Each level of break can
have its own DETAILHEAD.

There can be multiple occurances of each kind of heading.
means that interleaving of parts can occur.
For example:

2 PAGEHEAD,
3 LINE 7,

4 %MMDDYY COLUMN 70,
2 DETAILHEAD alpha,

3 LINE 8,
4 "GROUP",
4 alpha,

2 PAGEHEAD,
3 LINE + 1 ,

4 %PAGENUMBER() COLUMN 70 PICTURE "ZZ,ZZ9",

Details

The detail group is the main body of most reports.

This

MULTICS TECHNICAL BULLETIN MTB_321 page 18

<detail>

<detail_ctl>
<detail_ctl>
<detail_ctl>

.. -.. -

.. -.. -

.. -. . -

, 2 DETAIL <identifier> <[detail_ctl •••]>
<lines ••• > I

IF (<expr>)
MAXLINE <number>
FIT

I • . ,

The name of the detail is for reference by the PRINT statement.

IF

This optional specification causes <expr> to be evaluated. If it
is TRUE then the detail will be processed.

MAX LINE

This optional specification indicates the last line of a page on
which the group can start. If the current line is greater than
this, then a new page is started.

FIT

This optional specification is used when the result of the group
can vary in size, but the whole group must stay together on the
page. When this is specified, first %FIT is set to TRUE and the
group is tentatively processed. If it will fit, then it becomes
part of the page. If it· will not fit, then a new page is
started, %FIT is set to FALSE and the group is processed again.
If the group does not fit this time, it is just split when the
bottom of the page is reached (as if the FIT option were not
given).

Footings

Footings are placed after the detail information.
possible kinds.

There are 3

<footing>

<footing>
<footing>

DETAILFOOT

.
: . .

. - ,

. -. -. -. -

2

2
2

DETAILFOOT <identifier>
<[detail_ctl •••]> <lines ••. >

PAGEFOOT <lines ••• > !
REPORTFOOT <lines ••• >

This is a group of lines which are to appear whenever a control
break occurs at the specified <identifier>. DETAILFOOT cannot
occur unless the BREAK <report_ctl> has been specified. This

MULTICS TECHNICAL BULLETIN MTB_321 page 19

will not occur after the apparent break when the first record is
obtained.

PAGEFOOT

This is a group of lines which are to appear at the bottom of
each page. The first line of this group should contain an
absolute line number.

REPORTFOOT

This is a group of lines which follow the report. It is
processed only once, at the end (if any details have been printed
in the report). If the REPORTFOOT ~ppears after the PAGEFOOT,
then it will occupy a separate page.

Lines

Each line of a report is completely specified as to content and
position.

<line>
<line_ctl>
<line_ctl>
<line_ctl>
<line_ctl>
<line_ctl>

..- , 3 LINE <[line_ctl]> <[field •..]> .. -. . - <number> IF (<expr>) !
::=+<number> IF (<expr>) ! .. -. . - <number> ! ;
: : = + <number> ! ;

IF (<expr>)

The first thing after the LINE can be a line number. This can
either be a relative number to give single-, double-,
etc.-spacing, or it can be an absolute number. The first line of
a page is 1. Line 0 means end-of-page, i.e. the current page is
finished but the next one is not yet started. The default is +1.

IF

This optional specification causes <expr> to be evaluated. If it
is TRUE then the line will be processed. If it is FALSE, then
no processing is done and the possible side-effects of this
processing do not occur.

Fields

A line is made up of zero or more fields to be printed. There
are many ways of placing data in these fields.

MULTICS TECHNICAL BULLETIN MTB_321

<field>

<field>

<field~value_con>
<field_value_con>

<field_ value>
<field_ value>
<field_ value>
<field_ value>

: : = 4

: : = ' 4

<field value>
- <[field_ctl ••.]>

<field_value_con>)
<[field_ctl •••]>

.. -. . -
<field value> !;
(field_value_con>

.. - IF (.. -.. - IF (. . -.. -. . -

CONCATENATE <field_value>

<expr>) <identifier>
<expr>) <transform>

<identifier>
<transform>

I • . '
I • . '

page 20

A field can be made up of a literal, a variable, a
transformation, or a concatenation of any or all of these. Any
or all of these may be conditional. A conditional field_value
causes <expr> to be evaluated. If the result is true, then the
associated reference is included. A field is of a specific size;
even if no data is placed in it, it still occupies the location.

<field ctl> . . - PICTURE <quoted_str> - . . -
<field ctl> . . - EDIT <quoted_str> ! - . . -
<field ctl> .. - CHARACTER (<number>) - . . -
<field ctl> . . - LET (<assign ••• >) I • - . . - . '
<field ctl> .. - COLUMN <number> I • - .. - . '
(field..:...ctl> . . - JUSTIFY LEFT I • . . - . '
<field ctl> .. - CENTER I • - .. - . '
<field ctl> . . - JUSTIFY RIGHT ' . - . ·• - . '
<field ctl> . . - FILL I • - . . - . '
<field_ctl> . . - FILL (<number> <number>) ' . . . - ' . '
<field ctl> .. - ALIGN <quoted_str> <number> - .. -

I string is 1 character
<field ctl> . . - FOLD ! . . --

The first 3 <field_ctl>'s are data type. They are mutually
exclusive. They have the same meaning as in <dcl_spec>. The
next 2 <field_ctl>'s are general attributes. Any or all can be
applied. The last 7 (field_ctl>'s are specific to CHARACTER.
They are optional, but are mutually exclusive.

A line is set to spaces before any field processing is done.

IF

MULTICS TECHNICAL BULLETIN MTB_321 page 21

This optional specification caused <expr> to be evaluated. If it
is true, then the field will be processed.

LET

This optional specification causes one or more assignments to be
done. This is done before any <field_values>'s are referenced;
the field to be printed can be modified just before printing.

COLUMN

This optional specification indicates the print position where
the field is to begin. The default is to begin 1 position to the
right of the previous field (i.e. to skip a column between
fields). Column numbers must be in increasing order.

LEFT, CENTER, RIGHT fields can overlap. The are filled in the
order specified.

LEFT

This optional CHARACTER specification says that the data is to be
placed in the field against the left end. Leading and trailing
spaces are removed before determining the data length. Unused
positions to the right are not modified.

CENTER

This optional CHARACTER specification says that the data is to be
placed centered in the field. Leading and trailing spaces are
removed before determining the data length. Unused positions to
the right and left are not modified.

RIGHT

This optional CHARACTER specification says that the data is to be
placed in the field against the right end. Leading and trailing
spaces are removed before determining the data length. Unused
positions to the left are not modified.

FILL

This optional CHARACTER specification says that the data is to be
placed in the field a word at a time. If the whole string will
not fit in the size specified, then additional lines will be
used, containing only the FILL fields from the current line. The
words will be placed beginning in position 1 of the field on each
line. Words are delimited by spaces. Trailing spaces are
removed before determining the data length.

f"" FILL(n1,n2)

This form of the FILL says that the first line of the data is

MULTICS TECHNICAL BULLETIN MTB_321 page 22

begun in position n1 of the field and any successive ones begin
in position n2. Needless to say, both n1 and n2 must be within
the field size. If a word is longer than will fit in a single
line, it will be truncated to fit.

ALIGN "x" n

This optional CHARACTER specification says that the data is to be
scanned from the left for the character "x". The data is then
placed in the field so that this character is in position n of
the field. If "x" is not found, the data is just assigned to the
field.

FOLD

This optional CHARACTER specification says that if the data is
longer than the field length, then the first n are printed on the
first line, the second n on the second line, etc. Trailing
spaces are removed before determining the data length.

<exec>
<exec>

<stmt>
<stmt>
<strnt>

. . -.. -

.. -.. -

IF (<expr>) <stmt>
<stmt> !

<assign> ! ;
PRINT <identifier>
<end_phase>

I • . '

I • . '

The PRINT statement
processing is specified
Associated <heading>'s
appropriate.

references a detail. Any conditional
at the detail, line, or field level.

and <footing>'s will be processed when

The set of executable statements may be broken into phases by an
<end_phase>. At the <end_phase> point two things will happen,
in this order.

1) The data specified will be saved on a temporary file, and
processing will go back to retrieve more. This continues until
no more data can be retrieved.

2) Processing then continues at the <end_phase> point, it now
being treated as a retrieve for anything which follows.

If a SORT is specified, then the data is re-arranged before
subsequent processing.

~-

MULTICS TECHNICAL BULLETIN MTB_321 page 23

---<end _phase> .. - HOLD <identifier • • • > I • . . - ' ' . '
<end _phase> .. - SORT <sortkey ••• > . I • . . -

' ' . ' <end_phase> .. - HOLD <identifier ••• > .. -
' SORT <sortkey ••• > . I •

' ' . '
<end_phase> SORT <sortkey ••• > NO DUPLICATE I •

' . ' <end _phase> .. - HOLD <identifier ••• > . . - ' SORT <sortkey
' ••• > NO DUPLICATE

<sortkey> .. - <identifier> I • . . - . '
<sortkey> <identifier> ASCENDING I • . ' <sortkey> .. - <identifier> DESCENDING ! .. -

The HOLD specifies which items are to be saved for later use.
This can be either input items or local variables. The SORT
option says to rearrange them before this later use. The HOLD

SORT form is used when not all fields kept are to be
sorted. The hold list need only contain any fields not on the
sort list. A sortkey can optionally specify ASCENDING or
DESCENDING. The default is ASCENDING. The type of comparison
done will depend on the data type of the field. The NO_DUPLICATE
option means that only one record will be kept if more than one
exist with identical sort keys. The last one is the one kept.

The ASSIGN statement places a value into a variable.
variable can be one which was retrieved from the database.
action does not change the database, it merely changes the
into which the data was retrieved.

The
This

field

<assign>
<assign>

<transform>

. . -. . -.. -.. -

.. -. . -

<identifier> : = <expr> ; ! ;
<identifier> := <transform> ;

TRANSFORM (<expr> , <identifier>)!;

There can be different data types involved in the assignment. In
this case, the appropriate conversion is done.

The TRANSFORM must have matching data types, i.e. if you are
transforming an arithmetic data item, you must reference a table
which has arithmetic values.

MULTICS TECHNICAL BULLETIN MTB_321 page 24

Expressions

The expressions should be essentially what is allowed in PL/I.
The same operator precedence is followed.

Boolean Expressions

A BOOLEAN expression is one which can have the value of either
TRUE or FALSE.

· <expr> .. - <~xpr> OR <bterm> I • .. - . ' <expr> . . - <bterm> ! .. -
<bterm> . . - <bterm> AND <bfact> I • .. - . '
<bterm> .. - <bf act> .. -
<bf act> .. - <bref> I • .. - . '
<bf act> .. - NOT <bref > I • .. - . '
<bf act> .. - <relation> I • .. - . '
<bf act> <membership>

BOOLEAN items can be AND'ed and OR'ed. The NOT can be taken and
parentheses can be used. (Note that parentheses around <expr> is
described under <afact> later.)

If an <cexp> is used as a <bfact> it will be converted. If the
value of the expression is O, "0", "FALSE", "false", "F", or "f"
the result is FALSE, otherwise it is TRUE.

Two general types of complex operations are available: relation,
and membership.

Comparison relation

Either arithmetic or character expressions can be compared.

MULTICS TECHNICAL BULLETIN MTB_321

<relation>
<compare>
<compare>
<compare>
<compare>
<compare>
<compare>

.. -.. -

. . -.. -

<cexp>
EQ !;
NE !;
LE !;
GE ! ;
LT !;
GT !

<compare> <cexp>

page 25

If the first expression compares correctly with the second one,
the result is TRUE; otherwise, it is FALSE. The indicated
compares

EQ
LT
GT

are:
equal
less than
greater than

String Matching relation

NE
LE
GE

not equal
less than or equal
greater than or equal

A match can be looked for in a string sense. This means that no
regard is given to surrounding characters.

---,
<relation> .. - <cexp> <str rel> <cexp> -
<str rel> BEGINS I • - . '
<str rel> .. - NOT BEGIN I • - .. - . '
<str_rel> ENDS I • . '
<str rel> NOT END I • - . '
<str_rel> . . - CONTAINS I • .. - . '
<str_ rel> NOT CONTAIN

The string can be checked for under certain conditions. Given
these fields with the indicated contents:

abed "fundamentals of geometry"
def "builtin functions"
ghi "only for fun"

then this is what would happen:
abed BEGINS "fun" - TRUE
abed NOT BEGIN "fun" - FALSE
def NOT BEGIN "fun" - TRUE
def ENDS "fun" - FALSE
def NOT END "fun" - TRUE
ghi ENDS "fun" - TRUE
def CONTAINS "fun" - FALSE
abed CONTAINS "fun" - TRUE

Word Matching relation

MULTICS TECHNICAL BULLETIN MTB_321 page 26

A match can be looked for in a word sense. This means that each
word in the search string must occur surrounded by delimiters.
Delimiters are non-alphanumeric characters, beginning of string,
and end of string.

When you have
string BEGINS WORD match

match contains one or more words.
single space.

Words are separated by a

<relation> .. - <cexp> <word_rel> <cexp> .. -
<word rel> .. - BEGINS WORD I • - .. - . '
<word rel> NOT BEGIN WORD I • - . ' <word_rel> .. - ENDS WORD I • .. - . ' <word rel> NOT END WORD I • - . '
<word rel> .. - CONTAINS WORD I • - .. - . ' <word_rel> . . - NOT CONTAIN WORD ! . . -

Given these fields with the indicated contents:
abed "fundamentals of geometry"
def "builtin functions"
ghi "only for fun"

then this is what would happen:
abed BEGINS WORD "fun" - FALSE
abed NOT BEGIN WORD "fun" - TRUE
def NOT BEGIN WORD "fun" - TRUE
def ENDS WORD "fun" - FALSE
def NOT END WORD "fun" - TRUE
ghi ENDS.WORD "fun" - TRUE
def CONTAINS WORD "fun" - TRUE
abed CONTAINS WORD "fun" - FALSE

Membership

It can be tested whether or not an item is one of a set of
things. The set of things can be gotten from a SELECT statement
if it is within a WHILE clause.

-

MULTICS TECHNICAL BULLETIN MTE_321

<membership>
<membership>

<set>
<set>

It is easier to say

<cexp> IN (<set>)
<cexp> NOT IN (<set>)

<number , •.. > ! ;
<quoted_str , .•• >

state IN ("MN", "AZ", "MA", "LA")
than to say the equivalent

state = "MN"
OR state = "AZ"
OR state = "MA"
OR state = "LA"

I • . '
!

page 27

When an item is being tested, the data type must match.
Character vs. character, or arithmetic vs. arithmetic.

BOOLEAN items can be AND'ed and OR'ed. The NOT can be taken and
parentheses can be used. (Note that parentheses around <expr> is
described under <afact> later.)

If an <cexp> is used as a <bfact> it will be converted. If the
value of the expression is O, 11 011 , "FALSE", "false", "F", or "f"
the result is FALSE, otherwise it is TRUE.

Two general types of complex operations are available: relation,
and membership.

<bref> <cexp> I • . '
<bref> . . - TRUE I • . . - . '
<bref> . . - FALSE I • . . - . '
<bref> <bbuiltin>

<bbuiltin> .. - %LEVEL (<number>) I • .. - . '
<bbuiltin> .. - %LEVEL (<identifier>) I • . . - . '
<bbuiltin> %ABSENT (<identifier>) I • . '
<bbuiltin> %PRESENT (<identifier>) I • . '
<bbuiltin> . . - %FIT . . -

%LEVEL(<number>)

This BOOLEAN function is TRUE if a break at level <number> has
occured. <number> cannot be greater than the number of BREAK
fields declared in the report in which it occurs. %LEVEL(O) is
TRUE at end-of-data in each phase of processing.

MULTICS TECHNICAL BULLETIN MTB_321 page 28

%LEVEL(<identifier>)

This BOOLEAN function is
<identifier>. <identifier>
the report where it occurs.

true if a break has occurred on
must be declared as a BREAK field in
If you have specified

BREAK (a,b)
then these two are equivalent

%LEVEL(2)
%LEVEL(b)

%ABSENT(<identifier>)

This BOOLEAN function is TRUE if the named variable is blank.

%PRESENT(<identifier>)

This BOOLEAN function is TRUE if the named variable is non-blank.

%FIT

This BOOLEAN function is TRUE if the group in which it occurs fit
on the page the first time it was tried.

Character Expressions

<cexp>
<cexp>

::= <cexp> CONCATENATE <cref>
::= <cref> !

I • . ,

The only operator defined for character strings is concatenation.

MULTICS TECHNICAL BULLETIN MTB_321 page 29

<cref> <aexp> I • . ,
<cref> .. - <quoted_ str> I • .. - . ,
<cref> <cbuiltin> !

<cbuiltin> %SUBS TR (<cexp> <aexp> <aexp>) I • . ,
<cbuiltin> .. - %SUBSTR (<cexp> . . -
<cbuiltin> %ROMAN (<aexp>
<cbuiltin> %MMDDYY I • . ,
<cbuiltin> .. - %YYDDD I • . . - . ,
<cbuiltin> .. - %MONTH I • . . - . ,
<cbuiltin> .. - %DAY I • . '
<cbuiltin> .. - %HHMMSS I • .. - . ,
<cbuiltin> %REPEAT (<cexp>

%SUBSTRING

This is just like the SUBSTR in PL/I.

%ROMAN(<aexp>)

<aexp> I • . ,
) I • . ,

, <aexp>)

This CHARACTER function returns <aexp> converted to
numerals. The result is VARYING.

roman

These functions are all refering to date and time. This is the
date and time when the report command was called.

%MMDDYY

This CHARACTER function returns the date in the form "mm/dd/yy"

%YYDDD

This CHARACTER function returns the date in the 5-character
Julian form.

%MONTH

This CHARACTER function returns the month. The result is VARYING
and has an initial capital letter.

%DAY

This CHARACTER function returns the name of the day of the week.
The result is VARYING and has an initial capital letter.

f""' %HHMMSS - This CHARACTER function returns the time in the form "hh:mm:ss"

MULTICS TECHNICAL BULLETIN MTB_321 page 30

%REPEAT(<cexp>,<aexp>)

This CHARACTER function returns <cexp> repeated <aexp> times.

Arithmetic Expressions

In arithmetic expressions, there can be an intermixing of FIXED
and FLOAT. When this occurs, the FIXED is converted to FLOAT
before the operation is done.

<a exp> .. - <aexp> + <a term> I • .. - . ,
<aexp> .. - <aexp> - <a term> I • .. - . ,
<a exp> .. - <a term> ! .. -
<a term> .. - <a term> * <afact> I • .. - . ,
<a term> .. - <a term> I <afact> I • .. - . ,
<a term> <afact>

<a fact> <a ref> I • . '
<afact> .. - - <aref> I • . . - . ,
<afact> .. - + <aref> I • . . - . ,
<afact> .. - - (<a exp>) I • . . - . '
<afact> .. - + (<a exp>) I • .. - . ,
<afact> (<expr>)

This describes an ordinary arithmetic expression. It is really
shown here only for completeness.

<aref >
<aref >
<a ref>
<aref>

<abuiltin>
<abuiltin>

.. -.. -

. . -. . -.. -.. -
I • . ,

<number> !;
<identifier>
<identifier>
<abuiltin>

(<parameter
!

' ••• >)

%PAGENUMBER (<identifier>)
%PAGENUMBE_R () !

I • . ,

I • . ,

If <identifer> references a character field, it is valid as long
as the value in the field can be converted to FIXED or FLOAT.

%PAGENUMBER(<report_ref>)

This FIXED function returns the value of the current page of
specified report.

the

MULTICS TECHNICAL BULLETIN MTB_321 page 31

%PAGENUMBER()

This FIXED function returns the value of the current page of the
current report.

Miscellany

These are a few things which have not been defined anywhere else.

Comments are allowed in the source. These are like PL/I.
I* comment */
<parameter> ::= <expr>

MULTICS TECHNICAL BULLETIN MTB_321 page 32

Keywords

The keywords in the BNF also have short forms:

AND &
ASCENDING ASC
BOOLEAN BOOL
CHARACTER CHAR
COLUMN COL
CONCATENATE I I

I I

DECLARE DCL
DEFAULT DEF
DESCENDING DESC
EQ =
GE >=
GT >
JUSTIFY JUST
LE <=
LT <
MAXLINE MAXL
MINLINE MINL
NE A

=
NOT
OR I

I

PAGELENGTH PGL
PAGEWIDTH PGW
PARAMETER PARM
PICTURE PIC
SUBSTRING SUBS TR
TRANSFORM TRAN
VARYING VAR

External Interfaces

Each object module, xx, will have various entry points to fulfill
a range of functions.

xx$xx
This is the command interface. It will not exist if neither

FILE nor ATTACH is specified in the INPUT declaration.

xx$init
This is the I/O appendage interface. The report_ I/O switch

will be given the name xx as it's first parameter. When this
entry is called, necessary initialization will be performed.
Three entry variables will be passed back to report_; 1)
write_record, 2) put_chars, and 3) close. Either 1 or 2 will be
an error return depending on whether the input is to be RECORD or
STREAM.

xx$eufi
This is an

end-user-facility.
determined.

interface which
It's interface

will be
requirements

called
are

by
to

the
be

