
Multics Technical Bulletin

To: MTB Distribution

From: Benson I. Margulies

Date: November 11, 1980

Subject: Message Coordinator Considerations part 0:
New Considerations for the Message Coordinator

This MTB is the first of a series on the Message
Coordinator. It surveys the existing implementation, and
discusses some new needs that might be met by a new one.
Future MTB's will discuss the details of such an
implementation and its applications.

Any and all comments are solicited, and may be directed
to the author by Multics mail as:

Margulies @ MIT-Multics
or

Margulies.Multics <@ System M>

or by conventional communication:

Benson I. Margulies
Cambridge Information Systems Lab
HED MA29
575 Tech Square
Cambridge MA 02139

MTB-473

Internal Multics Project working document. Not to be distributed outside of the
Multics Project.

11 /11/80 1 MTB-473

MTB-473 Reimplementing the Message Coordinator

This MTB is about the Multics Message Coordinator, often referred to as the ...,
"me" or "the cordinator". The coordinator was originally devised to deal with
the output produced by the various system processes. While all of the functions
of Daemon printing, tape backup, and the like were clearly system functions,
they were given their own processes to avoid cluttering the Initializer's
process. The result of this was a row of terminals in the machine room, each
connected to its own system process. This was clumsy and required too many
terminals.

The obvious solution to this was a facility for controling multiple
processes from the system console. All it had to do was take some format of
input that gave the destination process, and collect all the output and print it
on the console. This was called the message coordinator.

Soon, however, other things were asked of the coordinator. It was
neccessary to reduce the traffic across the BOS console, which was (isl) slow
and at times unreliable. So support was added for the use or ordinary terminals
as additional system consoles. A routing scheme was devised for distributing
the output to the various possible destinations. The coordinator was not
mandatory in its initial release. As a result, the old means of handling the
BOS console had to be preserved, and the message coordinator was to be grafted
on top.

All of these functions, except running the system without the coordinator,
are still needed. Some new functions are needed, and some of the programming .._.
techniques that made the original implementation efficient have become obsolete.

The current implementation can be thought or a consisting of an input
routing mechanism, an output routing mechanism, a stream data utility, an
operators' interface, and a terminal manager.

The input routing mechanism has two features: the ability to de1iver a
message to a specified Daemon process, and the ability to "send a quit" to a
Daemon. All terminal input is logged in the global answering service log rather
than any log associated with the recipient process. Various restrictions can be
imposed on terminal input: a terminal can be unrestricted, restricted to only
deal with daemon replies, or prevented from supplying any input at all.

The output routing mechanism is designed around the idea of "Virtual
Consoles." These are the virtualized equivalents of that original row of
terminals in the machine room. The output generated by any particular daemon is
directed to one of these "vconses," and the vconses are in turn connected to
physical terminals. The table that connects daemon output to vconses is called
the Message Routing Table, or MRT, and the table that connects vconses to
terminals is called the vcons_tab. A vcons can be connected to a log instead of
a terminal; this causes the information sent there to be put in a standard
format system log in >system_control_1. The code also provides for "sink"
vconses that just discard whatever they receive. The net result of all this is
that output of daemons is directed to losical destinations (the vconses), and
then the logical destinations are multiplexed onto the available physical_
devices. Thus an administrator can redirect all the output logically grouped by

MTB-473 2 11/11/80

Reimplementing the Message Coordinator MTB-473

a vcons without having to change all the individual routings. She is isolated
from much of the difficulty of dealJ.ng witt the small number of output devices.

The stream utility is just an I/O Module called
messages via the input and out~ut routing schemes.
primary attachment in daemon proc3sses.

mr_ that reads and writes
It replaces tty_ as the

The operator's interface is the most complex part of the coordinator.
coordinator. In some sense the~e are two parts. The first consists of the
operator commands that actually control the coordinator. The second part is the
general control of all the other operator commands. If the coordinator was only
concerned with the delivery of messages, then the system would have an input
destination to which operator commands (like abs, or word) were sent, in the
same way that commands are sent to daemons. But having to pref ix all commands
to the system with the "reply" command for the coordinator to tell it where to
deliver them would be an unpleasant interface, to say the least. Instead, most
of the things typed on the consoles are directly delivered to the program
execute_ec_commancL., which executes them. Thus in order to implement the
restriction of a terminal to talking only to daemons, or only to a particular
daemon, each input line must be scanned to determine whether it is one of the
special subset allowed to restric~ed con~oles. Thus the coordinator must have
knowledge of the general format of operator commands.

All this must be rearranged for admin mode. In admin mode the console or
terminal on which the admin command is given is connected to a standard listen.....
in the Initializer's process. Admin mode is entered when an operator gi.ves the
"admin" command and supplies the correct password. In this mode, all input
lines are directly interpreted as Multics commands lines until the
"admi~ode_exit" command is given. To do this, the BOS console or coordinator
terminal on which the admin command is given is connected up to the switch
user_i/o in the Initializer's process, giving a nearly normal Multics environ
ment with the full power (and danger) of the Initializer's process. The program
borrow_tty_froDLJ11c_ temporarily patches the terminal entry in the coordinator
terminal manager's database (mc_anstbl) to prevent routed output from being sent
to it, connecting the switch user_i/o to it over an appropriate IO module, and
calling listen_.

The terminal management function is an event-driven facility based on
as_tty_. The terminals belonging to the coordinator are found in two ways: MC
service type, and "dial system." MC service type is a special service type in
the cdt that causes the terminal to be available to the coordinator rather than
for login. MC service is functionally identical to slave service. The only
difference is that processes other than the Initializer may not priv_attach
them, even if they have access to the neccessary ACS. The Initializer serves
the registered dial-id "system" to allow any login service terminal to be
connected to the coordinator.

MC service type terminals are automatically attached when the operator
"defines" a vcons to send output to them, using the operator define or redefine
command. Terminals dialed to "system" are attached when the operator accepts
them with the "accept" command. Terminals are detached if and only if the
operator uses the "drop" command on them. Coordinator terminals are not

11I11/80 3 MTB-473

MTB-473 Reimplementing the Message Coordinator

attached with tty_. Instead, they are entered in an table called the mc_anstbl,
and managed with direct calls to the hes_ tty entrypoints. Input from the
terminals is scanned in order to implement the input command restrictions.

There are many reasons for replacing this implementation. The first is
that it is old code. The technology used dates from expensive internal
procedures, restrictions on the efficiency or calls involving certain data
types, and the like. It has many outstanding problems, and is difficult to
maintain. This is itself would not be a reason to change the design. The
problem is that the current implementation depends on a series of very unmodular
techniques. In particular, the coordinator depends on knowledge of data in the
cdt and other Initializer databases. The conceptual basis or the design does
not provide the facilities to use a cleaner method. Admin mode is the best
example. To do admin mode without patching the cdt, it is neccessary to have a
way or sending messages to and from the Initializer in a symetric way. The
current distinction between input, which can only be delivered to daemons, and
output, which is routed, prevents this.

A second· reason is that the coordinator appears to be unneccessarily
expensive. Any message sent sets off a chain of wakeups in the Initializer's
process provoking the delivery of the message. It should be possible to design
a mechanism in which the only wakeups needed are to inform each destination of a
message that it is available. It should not be necessary to have a protocol
chain in which all the involved processes receive wakeups.

An other reason for a new implementation is to provide new functionality.
There are several examples. One of the original purposes of the coordinator was
to allow a reduction of traffic across the BOS console. Unfortunately, the
coordinator is entirely in the user ring. This requires all participating
processes to be trusted system processes. As a result, any inner ring
subsystems that need to send messages to logs or operators must pass through
ring 0 syserr. The configurations in the field are getting larger and larger,
and more and more subsystems need to log information or print it where the
operator can see it. So it is important to reduce the syserr traffic. A good
example is RCP. Ring 1 HCP could easily send many of its messages via the
message coordinator if any process could talk to the coordinator.

DSE has a concept called NOI in DSAC, which allows operators anywhere in
the network to send control messages to any or the machines. In the current
coordinator, only the Initializer process can generate input to daemons. Thus
to do NOI the Initializer would have to have the DSA connections neccessary to
serve NOI. Worse, the coordinator does not extend well to the idea of sending
commands to other machines (eg, UNCP). A more general facility for routing
messages could provide most of the needed functionality for NOI.

Of late it has become clear that the concentration of functions in the
Initializer's process has resulted in performance problems. Thus it is
important to be able to remove things from the Initializer's process. The
current strategies of message routings and terminal management, as outlined
above, are not suited to removal from the Initializer's process, because they ~
work by directly manipulating Answering Service data. A new implementation of

MTB-473 4 11/11/80

Reimplementing the Message Coordinator ~ITB-473

the coordinator could provide the same functions without these dependencies, and
could be removed from the Initializer's process.

It seems likely that all of the coordinator except the management of
terminals could be made passive. That is, no process other than the sender of
the message should need to run to delivery it. All that is left is the i/o to
system control terminals. Unfortunately, to move that task out of the
Initializer's process requires a way to get the information (the operator
commands) to execute_sc_commanct_. This program must run in the Initializer's
process because many of the operator commands deal with subsystems like volume
management which really have to be in that process. The current design provides
no scheme for sending input from a non-Initializer process back to the
Initializer in a way usuable for this function. Thus to decentralize the
terminal management we must have a more general message delivery system.

Finally, there is considerable interest in an upgraded facility to replace
senct_admin._command. The current facility just allows administrators to "shoot
their commands into the air." The result of a sac'd command do not return to
the sending process. In fact, they do not even always make it into a log. A
better coordinator could allow a facility along the lines of user_telnet where
administrators could temporarily "connect their terminals to the Initializer."

We could try to design a coordinator that does what it does, these new
functions, and nothing else. We could also try to design a general facility for
secure, routed message delivery that provides the current functionality, allows
the implementation of the facilities descussed above, and leaves the door open
to other development in the future. It seems clear that the second alternative
is better so long as the "general facility" really is general, and not merely
restricted in different ways. The form of such a design will be the subject of
the next MTB.

11/11/80 5 MTB-473

