
04/01/82 MULTICS TECHNICAL BULLETIN MTB-580

Date: 1 April, 1982

From: Robert S. Coren

Subject: Timers in Ring Zero MCS

To: MTB Distribution

Abstract

Various MCS applications, such as the HASP multiplexer and the
Hyperchannel multiplexer interface being Implemented for ASEA, have a need for
some sort of timer facility in the ring zero MCS environment, to implement
timeouts required by various communications protocols. This MTB describes an
implementation which satisfies all these requirements, permitting an arbitrary
number of timers for any channel or channel$. The timers provided are
reliable, in the sense that race conditions are prevented by the facility,
rather than requiring user code to explicitly avoid races.

Send any comments to the. author, via the Communications meeting on System-M:

>udd>Mul ti cs>Coren>mtgs>Communi cat ions. (comm)

04/01/82 - 1 -

04/01/82
Interface

Interface:

MTB-580
Sec. 1.0

The MCS timer facility provides the ability to schedule an arbitrary
number of timers for any channel. When a particular timer comes due, a new
type of MCS interrupt, the TIMER interrupt, is sent to the channel which
requested the timer. A 36 bit data word is delivered with the interrupt (as
the first ha 1 f of the 72 bit i nterrupt_i.nfo va 1 ue) , the contents of which were
specified when the timer was set. The data word can be used to identify· which
of several timers has come due.

Any MCS channel may have an arbitrary number of MCS timers associated
with it. Each timer has a fixed bin (35) timer ID, which must be unique among
the timers set for that channel. The timer IDs must only be unique per
channel; different channels may have timers with the same ID.

MCS timers are reliable, in the sense that they obey a strict set .of
rules, unlike ordinary process timers (timer_manager_), which are subject to
various race conditions, which the user procedure must guard against
explicitly. If used in accordance with the rules, MCS timers can be used
without any race conditions. MCS timers are guaranteed to obey the following
rules:

1) An MCS timer, once set, will always deliver exactly one MCS interrupt,
unless the timer is explicitly reset.

2) The interrupt for a timer will be delivered as promptly as possible, at
some time no earlier than the due time of the timer. Latency is discussed
in detail below.

3) Resetting a timer whose interrupt has not yet been delivered, regardless
of the due time of the timer, will guarantee that no interrupt is
delivered for that instance of the timer.

4) Changing the due time of a timer whose interrupt has not yet been
delivered, regardless of the former due time of the timer, will guarantee
that the timer interrupt for the timer arrives no earlier than the newly
set due time.

MCS timer interrupts are delivered as promptly as possible. The
interrupts are delivered by a procedure invoked by the pxss polling mechanism,
so they wi 11 be sampled every t.ime pxss is invoked. MCS timer pol 1 ing is
performed whenever a timer comes due, unlike most pxss polling, which is
simply invoked at a fixed interval. This reduces MCS timer latency !o a
minimum. If the channel receiving the interrupt is locked when the timer
interrupt arrives, the interrupt is queued, like any other interrupt. In
general, the latency due to pxss response time and channel lock conten~ion
should be quite small-- tens of milliseconds. Metering is kept for timer
latency, both average and maximum.

04/01/82 - i -

04/01/82
lnte.rface

KTB-580
Sec. 1.0

All the per-channel control entrypoints require that the channel be
locked when they are called. Various error conditions will cause either a
crash or a logged syserr message, depending on the severity of the error. It
is possible, by changing a 11 speclal 11 tuning parameter, called
"mes recoverable error severity" to cause all l'\CS timer errors to crash the
systmn, for use in -debugging. No facility is provided to crash individual
multiplexers on error, since by their very nature, timing problems are very
difficult to debug once any other error recovery has .occurred •

. No mcs_timer entrypoints have error code arguments, since it is not
posstble for an error to occur in an HCS timer operation which is both
(a) caused by some error outside the control of the calling program, and
(b) is recoverable·, rather than causing a system crash. A recoverable error in
an l'\CS timer call is indicated by a logged syserr message, and always
indicates a programming error in the calling program. An error code return in
this situation would not be of any use to the calling program, since all it
could possibly do is log a syserr message itself and hope for the best.
List of HCS timer errors:

Errors which crash the system:
1) Call for a devx which is not locked by this process.
2) Locking errors on the mes_timer lock (tty_buf.timer_lock)
3) Crawlout with HCS timer lock locked.

Errors which log a message and continue:
4) Call to set a timer with the same ID as an existing timer, or

reset/change a timer with an ID that does not identify an existing
timer. The call is ignored.

5) Calls to channel_manager$interrupt, interrupt_later, or
queued_interrupt, which specify a timer interrupt. Timer interrupts
may only be delivered through ehannel_manager$timer_interrupt. The
call is ignored.

The following entrypoints are provided for control of timers:

mes timer$set
Takes a devx, timer ID, and a time. Sets a timer which will come due
at the specified time for the specified channel (devx). If the channel
already has a timer set with the specified timer ID, it is an error,
and the call will have no effect (but see mcs_timer$change).

mcs_timer$reset
Takes a devx and timer ID, and resets the timer. There is a race
condition where the timer interrupt has already occurred while the
channe I is · 1 ocked, and been queued. This is hand 1 ed by having
mcs_timer$reset also check for a pending timer interrupt for that
timer, and dequeue the interrupt. If the specified timer does not
exist, it is an error, and the call will have no eff~ct. ·

- 3 -

oi.1011s2
Interface

mcs_timer$change

MTB-580
Sec. i.o

Takes a devx, timer ID, and time. The specified timer is rescheduled
for the new time. The race condition is the same as for
mcs_timerSreset, and is handled the same way. It is an error if the
specified timer does not exist.

mcs_timerSreset_all
Takes a devx, and resets all tfmers (if any) belongtng to that
channel, also dequeueing any pending timer interrupts. ·

mcs_timer$pol 1
Called by pxss, with no arguments, this
responsibility of delivering timer interrupts.

mcs_timerSunlock

procedure has the

Unlocks the timer lock. This is used only during the delivery of
interrupts (see Implementation, below). This entry exists because KCS
timer lock is managed by mcs_timer itself, rather than by tty_lock.

mcs_timer$verify_lock
Verifies the timer lock, crashing if it is held by.the calling
process. Called only by tty_lock$verify.

The first four entrypoints (set, reset, change, and reset_all) are
declared in the include file mcs_timer_dcls.incl.pll.

There will be metering data collected by mcs_timer on the timer facility,
and displayed by system_comm_meters. The format of this data will be

.determined during the implementation, and specified in the final KCR. It will
consist at least of call counts, call timi·ngs, and latency statistics.

Similarly, tty_dump and tty_analyze will be modified to ·be aware of the
timer lists, and display them in some appropriate format.· }his format will
alsQ be determined.during the implementation, and specified in the final KCR.

04/01/82 - 4 -

O!t/01/82
Implementation

Implementation:

KTB-580
See. 2.0

MCS timers are implemented as "timer blocks", allocated in tty_buf.
There is a thread running through all timer blocks in the system, which sorts
them in ascending order of due time, and there is also a thread running
through all timer blocks associated with a particular channel. Each timer
block has the following declaration:

declare 1 timer
2 next_timer
2 prev_timer
2 next_for_lcte
2 prev_for_lcte

2 pad
2 devx
2 data
2 time

aligned based (timer_ptr),
bit (18) unaligned,
bit (18) unaligned,
bit (18) unaligned,
bit (18) unaligned,

bit (18) unaligned,
fixed bin (17) unaligned,
f i xed b i n (35) ,
f i xed bi n (71) ;

Each timer block is six words long. The first two words are the threads
for the two timer lists, the third to identify the owning channel, the fourth

. to contain the timer 10, and the remaining two for the due time.

,. . The· fo 11 owing var i ab 1 es are defined in the tty _buf. header, and define the
global state of the timer facility. Some of these variables may prove
redundant in the implementation, and may be eliminated. Some sort of metering
data will also be kept (number of timers, number of calls to various entries,
average and maximum timer delivery lag, and whatnot) •. These wi 11 be specified
in the final MCR, once an implementation is chosen, as will new
system_comm_meters output.

tty buf.next timer time fixed bin (71)
- The tim; (clock reading) at which the next timer is to go off.

tty_buf.next_timer bit (18) aligned
The offset of the timer block belonging to the next timer scheduled.

tty_buf.timer_count fixed bin
The number of currently scheduled timers {mature and otherwise).

tty_buf. timer _lock bit (36) a 1 i gned
The lock protecting all the timer threads. It must be held for any
operation which manipulates timer blocks.

tty_buf.timers_being_polled bit (1) aligned

04/01/82

A bit indicating that there is a timer polling.operation in progress.
If mcs_timer$po11, after locking the timer lock, discovers this bit
set, it just unlocks the lock and returns, to avoid interfering with
the other processor doing polling.

- 5 -

04/01/82
I mp 1 emen tat ion·

MTB-580
Sec. 2~0

Additionally, a bit (18) offset will be added to the lcte
(lcte.timer_thread) which, if nonzero, is the offset of the first timer
scheduled for that channel. Timer blocks are .not sorted in chronological order
on the per-lcte thread, but only on the per-system thread.

Locking:

The MCS timer
hierarchy, it is
tty~space_man) and
It is a spin lock,

lock is a wired lock, a spin lock.
above the LCTE locks, but below the

the tty queue lock (used for queueing
all mcs_timer functions must run in a

In the MCS locking
tty_buf lock (used by

interrupts). Since
wired environment.

Locking for call-side operations is quite straightforward. The process
(which· must already hold the channel lock) calls mes timer, which locks the
timer lock, adds, removes, or changes the timer block, ·rethreads the two timer
threads and unlocks. If the call-side operation creates a .timer which matures
before any of the previously existing timers, pxss is informed of the updated
next time for polling.

For the reset and change entries; while it has the timer lock held,
mcs_timer will also check the queue list pointer for the channel to see if
there are any queued interrupts, and, if so, call tty_lock$dequeue_timer (a
new entry) to lock the queue lock, dequeue the specified timer interrupt (if
it is present), unlock the queue lock, and return an indication of whether it
found the timer. """

Interrupt side locking is more complicated, and follows (roughly) the
following path. The timer lock is held at all times except when a channel's
interrupt entry is called. The additional protection of having the

• 11 timers_being_pol led 11 flag is there only to insure serial delivery of the
timer interrupts.

1) pxss cal ls mcs_timer$pol 1 (on the PROS).

2) Lock the timer lock.

3) If tty_buf.timers_being_polled is set, unlock the lock, and return.
Otherwise, set it.

4) If tty_buf.next_timer is later than the current time, reset
tty_buf.timers_being_polled, inform pxss of the next time we want to be
polled, unlock the lock, and return. If this is the first time through
the polling loop, it might be appropriate to log a message, as well,
since polling is supposed to only happen when there are timers
outstanding.

04/01/82 - 6 -

01+/01/82
Implementation

KTB-580
Sec. 2 .1

5) Dequeue the first timer, removing it from the global and per-channel
timer threads. Update the timer count, next timer time, and next timer
offset. Free the space the timer block occupied (keeping the data from
the timer block in local storage).

6) Call channel_managerStimer_interrupt to deliver the interrupt. Give .it
(from the dequeued timer block) the devx, the timer data, and a bit (1)
argument (timer_lock_untocked) which it returns to indicate whether it
had to unlock the. timer lock to deliver the interrupt.

7) channel_manager$timer _interrupt behaves pr.etty much 1 ike
channel_manager$interrupt, with the exception of how it handles a failure
to lock the channel for interrupt. Except for this small amount of
special handling, all metering and tracing is done just as for the normal
interrupt entry. It calls tty_lock$1ock_channel_int to try to lock the
channe 1.

7a) If the channel could not be locked, channel_manager$timer_interrupt
simpl.y. sets timer lock unlocked to 11011b and returns, with the interrupt
having been added to the queue for that channel.

7b) If the channel could be locked, it sets timer lock unlocked to 11 l 11b, and
calls mcs_timerSunlock to unlock the lock.-lt then calls the interrupt
entry for the channel. This is done to avoid locking hierarchy problems
which · wou 1 d otherwise occur when the mu 1.t i p 1 exer, or even ·some
submultiplexer, tried to call mcs_timer to set or change some other
timers. Once the interrupt processing is finished, channel_manager
returns.

8) Upon return from channel_manager, mcs_timer checks timer_lock_unlocked,
and relocks the timer lock if channel_manager had to unlock it. It then
proceeds back to step 4, above.

A new entry is added to tty_lock, tty_lock$dequeue_timer, which locks the
i. nterrupt queue, and removes the requested timer interrupt from the queue if
it is there. The channel_manager timer_interrupt entry is the only means by
which a timer interrupt may be signalled; if another interrupt entry i~ asked
to deliver a timer interrupt, it is an error, and the call is ignored.

04/01/82 - 7 -

04/01/82
Subroutine Entri~s
mcs_timerSset

Entry: mcs_timerSset

MTB-580
Sec. 3.0

mcs_timer$set

This
suppl led
delivered
set with

entry sets an MCS timer to come due at some future time. If the time
is in the past, it is not an error, and the timer interrupt will be
at the next possible opportunity. If the channel already has a timer

. channel
ca 11 ed.

the specified timer ID, it is an error, and no new timer is set. The
specified must be locked to the calling process when mcs_timer$set is

Usage:

dcl mcs_timer$set entry
{ f i xed bi n, f i xed bi n {71) , f i xed bi n {35)) ;

call mcs_timer$set {devx, time, timer_id);

Arguments:

1) devx Input
The devx of the channel for which the timer is to be set.

2) time Input
The time at which the timer is to come due.

3) timer_id Input
A number identifying the timer. This can be used by a multiplexer to
distinguish between several timers, each of which times out to control a
different aspect of the protocol. This value is supplied as data when a

· ti mer interrupt is de 1 i vered {see "Ti mer Interrupts 11 • be 1 ow) •

04/01/82 - 8 -

Olt/01/82
Subrout\ne Entries

,,.. . · mcs_timer$reset

Entry: mcs_timer$reset

HTB-580
Sec. 3.0

mcs_timer$reset

This entry resets an existing KCS timer. If the channel has no timer set
with the specified-timer ID, and there is also no queued timer interrupt for
the specified timer ID on the channel, it is an error, and no timers are
reset. Because the queued interrupts for the channel are also checked by this
entry, it is always safe to reset a timer without having to worry about
spurious interrupts later. The channel specified must be locked to the
calling process when mcs_timer$reset is called.

Usage:

dcl mcs_timer$reset entry (fixed bin, f lxed bin (35));

cal I mcs_Hmer$reset (devx, timer _Id);

Arguments:

1) devx Input
The devx of the channel for which the timer is to be reset.

2) timer _id
The ID of the timer
mcs_timer$set.

04/01/82

Input
to reset, as supplied in a prior call

- 9 -

to

04/01/82
Subroutine Entries
mcs_timer$change

Entry: mcs_timer$change

MTB-580
Sec. 3.0

mcs_timer$change

This entry changes the maturity time of an existing MCS timer. If the
channel has no timer set with the specified timer ID, and there ls also no
queued timer interrupt for the specified timer ID on the channel, it is an
error, and no timers are changed. Because the queued interrupts for the
channel are also checked by this entry, it is always safe to change the
maturity time for a timer without having to worry about spurious interrupts
later. The channel specified must be locked to the calling process when
mcs_timer$change is called.

Usage:

dcl mes timer$change entry
(fixed bin, fixed bin (71), fixed bin (35));

call mcs_timer$change (devx, new_time, timer_id);

Arguments:

1) devx Input
The devx of the channel for which the timer is to be reset.

2) new_time Input
The new time at which the timer is to become mature. It may be either
before or after the existing value.

3) timer_id
The ID of the timer
mcs_timer$set.

04/01/82

Input
to change, as supplied in a prior call to

- 10 -

Olt/01/82
Subroutine Entries
mcs_timer$reset_a11

Entry: mc:s_timer$reset_a11

MTB-580
Sec. 3.0

mcs_timer$reset_a11

This entry resets and and all timers and pending timer interrupts for a
channel. It is not an error if the channel has no timers or pending
interrupts. It can be used when it is necessary to reset.the timers for a
channel to a known state, such as at multiplexer crash time or whatever. The
specified channel must be Jocked when this entry is called.

Usage:

dc1 mes timer$reset all entry (fixed bin); - - '

ea11 mc:s_timer$reset_a11 (devx);

·Arguments:

1) devx Input
The devx of the channel for which a11 timers are to ·be reset.

Olt/01/82 - 11 -

04/01/82
Subroutine Entries
Interrupt Entry

Delivery of timer interrupts:

HTB-580
Sec. 3.0

Interrupt Entry

When a timer interrupt is delivered to a multiplexer, the multiplexer's
interrupt entry is invoked with an interrup~_type parameter with the value
TIMER (declared in mcs_interrupt_info.incl.pll), and a 72 bit interrupt_data
value which overlays the following structure, also declared in
mcs_interrupt_info.incl.pll:

declare 1 timer_interrupt_data,
2 timer id fixed bin (35),
2 pad - bit (36) aligned;

The timer_id element in the interrupt data is the ID of the timer which
has gone off; a timer ID is supplied in the original call to mcs_timer$set.
The timer ID can be used to distinguish between different timers implement_ing
different aspects of the protocol.

04/01/82 - 12 -

~ - --·

