
..

~'.TB- 418
Date: 7/11/79

To: Distribution

From: Bernard S. Greenberg

Subject: The Echo Negotiation Papers

This MTS consists of the two design documents for the "Echo
tlegotiation" schemes, Ring Zero and fNP. Echo negotiation is a general
scheme for allowing synchronization of output with echoing of input in
a multilevel communications processing hierarchy. Such synchronization
is necessary in a managed-video environment, for echoing of input is
conditional upon processing of previous input, and must be performed at
places on the screen determined by output from previous input.

The need for these schemes in Multics is motivated by the need for
performance amelioration of the experimental Emacs editor, which
maintains,-such a managed-video environment, and has need for such
synchronization. In its first implementation (March, 1978), Multics
Emacs achieved this synchronization by receiving all characters in ring
4 as they were typed, This was inordinately expensive, requiring a
wakeup and process loading, as well as the running of a user process
and multiple calls through the TTY Dim, for e2ch character typed.

In January, 1979, the scheme described by the first of the two
papers contained herein was implemented, shifting the principal
responsibility for echoing echoable typed input fro1n the ring 4 code
(Emacs) to. the ring zero interrupt side of the Multics TTY software.
This red~~ed the number of wakeups and loadings for the inputting of
text from one per character (50 or so per line) to two per line.
This implementation was shipped as part of Multics Release 7.0a,

As some experience with this scheme was gained, it was predicted
(given 6 milliseconds, worst case, for HCS interrupts to the mainframe)
that 100 Emacs users would entirely saturate one CPU with interru~ts
(assuming text type-in at 5 characters a second). This appeared to be
the most immediate and most crushing bottleneck in Emacs performance.
Thus, a scheme was devised to eliminate per-character mainframe
transactions where possible, by having the front End Processor (fNP,
fEP, 355, 66/32, 66/78, etc.) echo characters for typed input.
Correct implementation of this facility requires synchronization
protocols to carefully control the circumstances under w~ich echoing
is performed: the circumstances under which it starts, and stops.
A now-operative (July, 1979) implementation of this idea is
described in the second paper.

Multics Project internal working documentation, Not to be distributed

or reproduced outside the Multics project.

Page 1

As implemented now, a four level hierarchy of echoing software
exists:

I

II

III

IV

Emacs Lisp Code

Emacs HCS interface (e pl1

Ring Zero MCS (TTY Dim)

FNP (potentially, .other
"multiplexers")

The top level (the Emacs editor) asks for and receives non-echoed
characters from the lower (higher-numbered) levels, until it enters the
''negotiated echo state'', by being at ''rest'' at the end of a line (and
certain other conditions met: see the first paper). At this point,
Level I calls level II, passing as a parameter the length of the line
left on the screen to the right of the cursor, Ultimately, Level II
teturns to Level I a collection of N characters, the first E (E
possibly zero) of which were echoed.

Level I does not care which level echoed the E characters, all it
cares is that they were (or perhaps were not echoed). Level I will procesi
all the returned characters that were not indicated as echoed,
processing them as Emacs "commands'', incTuding echoing those that (
should be echoed but were not indicated as already echoed.

The interface between Level II and Level III, and between Level II
and Lev~l.IV, is virtually identical. Each returns what characters it
has buffered if it has characters buffered, telling how many were kno~n
to have been echoed, and in this case calling no lower level. If a
level has no characters, the next lower level is called, passing the
screen-length left. That lower level returns characters, some of which
it indicates as having been echoed, and the rest not. The upper level
considers the lower level's echoage as part of its own, and processes
the remainder to attempt to echo the first E' characters after the
returned echoed string. In this way, any lower level can "punt''
echoing for arbitrary or internal reasons, being assured that echoable
characters will be echoed by some level, and optimally, one as far down
(and thus , e ff i c i en t) as poss IDTe.

The ''multilevel echo hierarchy'' also provides for lower levels
that do not support this echo protocol: the upper level will simply
echo, as the lower level has returned no echoed characters. Similarly,
lower levels yet (i.e., programrnably-eChoing terminals or concentrators)
can be added in an integrated and consistent fashion.

Levels also ship ''break tables'' down the line to each other. It
can be shown that these tables can only be requested to be shipped when
the entire system is in the non-echoing state. (

The current FHP echoing is not more
than echoplex: no number of asynchronous
has ever caused a shortage of FNP time;

consumptive of FNP time
lines running echoplex
thus, there

appears to be little motivation (for the FNP, at least) of devising
schemes to have ·~cha-negotiating terminali~ Attempting to do so even
introduces new problems (see the second paper). for common-carrier
net (e.g., TYMNET) access to FNP channels, this is still an interesting
problem.

(<ND) Page 3

Interrupt-time Echo Negotiation BSG 1/21/79
revised 1/27/79

ESC-Q'ed to ~XF = 72 5/30/79

Interrupt-time echo negotiation is a proposal to modify the
interrupt side of ring-0 MCS to conditionally "echo", or send back to
the user terminal, characters input from the keyboard. The goal is
performance improvement of Multics Emacs (or any other conceivable
real-time editor implementation on Multics), and increasing the
apparent responsiveness thereof many fold. Complete transparency to
the Emacs user as well as the Emacs extension-writer is a design
constraint.

Programs which attempt to manage a display terminal
intelligently cannot allow the terminal itself to unconditionally print
characters as they are typed. As long as type-ahead is allowed,
characters must be placed on the screen at positions determined by the
central system's interpretation of previous characters. Until all
previous characters have been processed by the central system, and the
terminal's cursor repositioned appropriately, characters may not be
typed out as ~hey ~re typed in ("echoed"), whether it be by the central
system, the FNP, or the terminal itself. Thus, the use of "local copy"
(unconditional terminal echoing) is ruled out in a display-managed
environment.

The current Emacs implementation receives each character from
the terminal via calls to the Ring 0 tty dim; several may be read at
once. If Emacs was blocked waiting for input, only one wakeup will be
sent. If Emacs was not blocked, no wakeups will be sent (this is an
old feature of the tty dim). If Emacs can process characters as fast
as they are typed, one wakeup, one process loading, one read
(get chars) call on ring zero, and one write (put chars) call on ring
zero will be made for each character. This shows-up as a tremendous
CPU and paging consumption in the user ring (and user-initiated calls).
If Emacs falls behind, fewer calls are made and more characters are
read and written per each call to ring zero, and no wakeups occur until
Emacs actually catches up. Strangely enough, it is thus much more
efficient when it falls behind.

The case of "just typing in text" is, statistically, a very
important one, one of the most frustrating when the system is slow, the
greatest cause of expense (largest number of characters per second) and
the one most amenable to optimization. If no typing errors are made,
it is the case where Emacs is doing the least for the user for the
greatest expense. But when typing errors are made, Emacs excels here.
''Just typing in text'' means adding ''trivial" printing characters (i.e.,
''a", ''$'', "/'', '' ", but NOT backspace, rubout, control characters,
carriage return, etc.) at the end of a line. Included in this case is
the typing of ''minibuffers'' (responses to Emacs-generated prompts),
This case is what is dealt with by ''input mode'' in QEDX or EDM. It is
one of the things that Emacs does best, but one of the most expensive.

The proposal is to optimize the ''just typing in text", known
in Emacs jargon as ''EOL (end of line) self-insert" by having the

Page 4

(

(

(

nterrupt side of the tty dim echo characters when Emacs deems it
ppropriate. The effect of this will be that, once Emacs is caught up
haracters will be echoed (and thus appear on the screen) as soon as '
hey are typed. Emacs will not be woken up (or loaded, or run) until
ome "break condition'' occurs, as defined below. The response time for
OL self-insert echo will only be a function of interrupt response
milliseconds even on a heavily loaded system) ·instead of
recess-loading response (which can vary from milliseconds to seconds).

A break condition, in this context, means a situation where
ing 0 can no longer echo characters. Such break conditions are:

1) Enough characters have been echoed to fill the screen (terminal)
line. We cannot .know where to put the next character; although
it may be simply at the start of the next line (this is an avenue
for more future optimization), a complex redisplay involving
moving the entire screen around may need to be done before the \c
and continuation line can be displayed.

2) A non-echoable character is received. The ring zero dim will be
supplied with a bit-table by Emacs of echoable characters. All
control characters are non-echoable. They are editor commands,
not characters to be printed on the screen. Ditto II, @, etc.
Similarly, tabs and backspaces require special redisplay action.

3) The interrupt side can no longer echo, due to inability to
allocate a buffer bound for the FHP, or other internal problem.

4) The person at the terminal hits QUIT (which also causes a
resetread).

Whe~ a break condition occurs, Emacs (if blocked) will be
oken up, and echoing will cease. Characters will continue to
ccumulate in the normal breakall-mode fashion until Emacs calls in and
eads them. A return parameter of the read call is the count of echoed
haracters; the total count of input characters has always been a
eturn parameter.

Emacs will process all characters read, as usual, inserting
trivial" characters in its buffer or minibuffer as it has always done.
owever, the echoing of "trivial" characters processed as EOL
elf-inserts by ring zero will be suppressed.

This implementation is believed to be race-free. Some of the
deas in it are due to J. Spencer Love and Jerry Stern. Earl Killian
nd Dave Moon contributed a few improvements, too.

A new entry point to the ring zero tty dim will be defined,
cs $echo negotiate get chars (see the include file at the end of this
ull). It is like the normal get chars entry of the ring 0 dim
hes $tty read), plus extra. Before describing the differences, it is
ritTcal to note some features of both these entrypoints:

Page 5

1) The entrypoints are called with a device index,
its size, and read characters into the buffer.
returned characters is returned.

and a buffer and
The count of

2) If no characters are returned, a flag is set in ring zero, such
that a wakeup will be sent when characte~s ''are available". If
characters are returned, this flag will not be set, and thus no
wakeup will be sent, even when characters become ''available'',
unless another call is made in the interim which finds no
~haracters available.

For normal tty dim get line calls, "available" means a complete
line has arrived in ring zero. For get chars calls in breakall
mode, and echo negotiate get chars calls in breakall mode, this
means any charicters havTng irrived (from the FNP) in ring zero
at all.

There is no way the input side of the tty dim ever sends wakeups
(other than QUIT) other than this mechanism. The user ring is
allowed to go blocked (i.e.~ expect a wakeup), if and only if one
of these calls returned no characters.

The new entrypoint will, if no characters are available,
return this fact, set this "wakeup flag", and set a bit in the wired
terminal control block (WTCB) placing the terminal in "ring zero echo
state". This means that ring zero's interrupt side will echo
characters until a break condition occurs. This call-side operation
will be locked against the interrupt side via extant tty dim
mechanisms. Thus, the determination that no characters are available
is a unitary operation.

If characters are available, all available characters will be
returned. A count of characters that have been echoed before the break
condition was encountered will be returned: call that count <n>. The
wakeup-flag will not be set. The dim will not go into ring zero echo
state. Emacs will be expected to process the characters, generating
any redisplay necessary. The first <n> of these characters have
already been echoed by ring zero; Emacs is not to echo them. Emacs is
expected to call back when these characters have been processed, and
all redisplay output from the the interpretation of these characters
queued to the FNP in ring zero (via having made sufficient calls to
output all redisplay output). At this time the terminal is NOT in the
ring zero echo state; characters are not being echoed by ring zero.

When Emacs calls back, it will either be via the normal
get chars or the echo negotiate get chars entries. If characters are
available when Emacs calls back~ thus, <n> will be zero for the new
call, and Emacs is expected to echo all characters as necessary. Only
when Emacs "catches up'' will the new call enable the ring zero echo
state.

Emacs will call the new entrypoint only when it describes
itself as being ''at the end of a line'', i.e., amenable to EOL

(

(

(

. '

elf-insert echo. Otherwise, the regular get chars (hes $tty read)
ntry will be called. Thus, inserting text in the middle of a line
which may involve "hard" redisplay) will not benefit by this
ptimization. Similarly, when ring zero echoing has been stopped due
.o typing a ''prefix character" (say, ESCAPE or\), the next call will
1e to the regular get chars (the motivation he~e is that ESC-A is an
1ditor command, the A-should not be echoed). This simply falls out of
:he : nplementation as so far described. Thus, only when Emacs states
'I am at top-level command-level at the end of a line" is ring zero
1choing enabled.

If the user can type characters as fast or faster than ~macs
~an process them, all echoing will be done by Emacs in ring four. By
1ypothesis, Emacs will never go blocked, and thus never be woken up, or
1eed to be loaded. It will be processing characters in batch mode,
·eading and outputting many at a time. If the system is so heavily
.oaded that this is the case, that we cannot even get the sheer cpu
.ime to process these characters, we are in deep trouble, which is to
1ay, no worse than today. Unless this is the case, by hypothesis,
:macs will eventually catch up. Once it is caught up, ring zero will
~cha characters until a break condition occurs, and then we are waiting
1n Emacs to be loaded, process the characters, and ultimately revert
·ing zero echoing. Compare this to today where typing ANY character
1ill wake up and load Emacs to echo it; the gain should be clear. I am
1leased and proud that even under these adverse circumstances today,
:macs responds elegantly and rapidly most of the time.

A new order to the ring zero tty dim will be provided to
;upply a table of which characters will cause a break condition. This
:able will be set in wired ring zero storage by explicit call any time
:macs changes character bindinis such that the
;elf-insert/non-self-insert status of characters changes. This call
1ill be made right before the next call to echo negotiate get chars,
once all such binding changes have been determined. There is-no race
1ere; this table can only affect characters that have not yet been
orocessed by the ring zero interrupt side. Characters already in ring
:ero, processed, will be returned. None of them could have been echoed
perhaps falsely) by ring zero, because the previous call to ring zero

1ust have returned characters. This must be the case because Emacs did
:omething other than a self-insert, namely, something which involved at
.he LEAST switching some character bindings. Thus, the previous call
o ring zero could not have been a zero-character-returning
,cha negotiate get chars call, because it returned the commands that
ausid Emacs t~ 11 tike non-trivial action''· Thus, ring zero cannot, at
he time of the table-set call, be echoing. Characters not yet typed,
'r queued on the channel lock in ring zero, in the FNP, or in transit
o the Multics interrupt side are equivalent; they will be echoed
ccording to the new table.

The info structure for the new order includes information for
uture implementation of rubouts (delete the last character from the
creen, and ultimately the Emacs buffer) by ring zero. Thus, the most
ommon typing correction will be processed without waking up ring four.
he preferred sequence for removing the last character from the screen,

Page 7

which must be a self-inserting printable character (viz., not TAB),
will be supplied by ring four, along with a count of necessary pad C-
characters for this operation. On some terminals, this might be the
sequence for ''backspace, space, backspace", but on more sophisticated
terminals, "backspace, kill-to-end-of-line'' is preferred, which is a
terminal-dependent sequence. A flag is provided as to whether
characters deleted by the interrupt side in thi~ fashion should simply
be removed from the input buffer transparently or placed in the buffer
with the "rubout" character; this latter alternative allows the ring
four program to display to the user the ''last 50 characters typed",
often a useful ability. Two rubout characters are allowed, normally
supplied by ring four. Pound-sign (HJ and ASCII rubout would be the
usual choice, but this is completely dependent on user action setting
key-bindings, etc.

Note that the ring zero interrupt side, if doing "rubout''
processing, can never delete a TAB or any (other) character it itself
did not echo. If the dim is not in the echoing state upon the receipt
of a rubout, or all accumulated, echoed characters have been rubbed
out, the dim must wake up Emacs and suspend echoing, if on. ·

An9 call to the normal get chars entry disables ring zero
echo (until the next call the echo negotiate get chars that enables
it).· Withi~ kmacs, as shown above~ it shoula neier be the case that it
should need to. Yet, unexpected Multics action (i.e., a fault) causing
ultimate return to command level, should turn it off. The first
get chars or get line call that is made will thus do this. There is (
also an esoteric-case involving the Emacs interrupt system (!l, which
is used for console messages and mode-line time displays, etc., which
requires explicit disabling of ring zero echo, as cursor position will
be changed even though no characters other than EOL self-inserts were
entered from- the keyboard. This problem is fairly hirsute. For detail
on it, see

>udd>m>bsg>rOe.inter.text (MIT-Multics)
AI:DLW2;BSGROI > (MIT-~I ITS)

The scheme above has been imolemented and tested (other than
the interrupt interaction), and works as expected. It has not yet been
metered.

There is a negative effect of moving any echoing out of the
body of Emacs: by virtue of the same performance improvements that
reduce the mean page residency time, the likelihood of the needed pages
of Emacs being in main memory when needed, i.e., echoing stops, is
reduced. Although this reduces the load on the system, and the cost to
the user, the response time degradation when the bulk of the editor has
to be paged in became quite noticeable the last time a paging/CPU
performance improvement was implemented for EOL echoing, and this
effect will surely be significant here too. On a very lightly loaded (
system, or hopefully, one where many processes are using Emacs, this
effect will hopefully be ameliorated.

Page 8

' '

It has been suggested that inserting characters into the
~iddle a line could also be optimized, placing a terminal in "insert
node" while ring zero is echoing. This is only useful, however, for
;erminals that support this feature, and requires management of the
:erminal's firmware state. Although common, this operation is nowhere
is statistically significant as EOL echo. No ~uch facility is planned
ror the near future.

One is tempted to ask as to why this echoing is not best done
ln the FNP; in truth, it would be much more efficient to do it in the
'NP. Yet, the critical timing races which are solved by interrupt side
1ersus call side locking in the above implementation are not amenable
~o such solution were the FNP doing the echoing. In fact, it is
~xtremely non-trivial to devise a set of protocols such that all this
•arks in that case. Lee Parks has proposed a set of protocols similar
to the window managment and packet numbering of the CHAOS net which
seem to offer some hope; Jerry Stern has devised similar, and these are
under inves~jgation, but implementation does n6t look imminent. If
this sort of thing can be made to work, the door is open to pushing
echo further.down the line, to customized terminals. However, I cannot
imagine that given any reasonable amount of FNP power, it would be
necessary to resort to this for optimization of EOL self-insert
redisplay, Moving editing functions involves extreme levels of
complexity which dwarf any of the issues raised above.

But that's another ball game.

xx

I* BEGIN INCLUDE FILE mcs_echo_neg.incl.pl1 Bernard Greenberg 1/20/79 */'

I* This include file defines the callable entrypoints and argument data
structures for ring O echo negotiation */

dcl echo neg datap ptr;
dcl echo:neg:data_version 1 fixed bin static options (constant) init (1);

dcl 1 echo neg data based (echng datap) aligned,/* Echo negotiation data */
2 version fixed bin, -
2 break CO: 127) bit (1) unaligned, /* BrP.ak table, 1 ~ break */
2 rubout_trigger_chars (2) unal,/* Characters that cause.rubout action */

3 char char (1) unaligned,
2 rubout sequence length fixed bin (4) unsigned unaligned,
2 rubout-pad count fixed bin (IJ) unsigned unaligned,
2 buffer-rubouts bit (1) unaligned,
2 rubout=sequence char (12) unaligned; I* Actual rubout sequence */

dcl hes $echo negotiate get chars

I*

entry (fixed bin (35), ptr, fixed bin, fixed bin, fixed bin,
fixed bin, fixed bin, fixed bin, fixed bin (35ll;

Page 9 ,

call hes $echo negotiate get chars #"
(devx, datap, nelemt, offset, NRETURNED, NECHOED_RETURNED, screen_le!it

ST ATE, CO;)E) ;

END INCLUDE FILE mcs_echo_neg.incl.pl1 */

(

'. ' .

FNP Echo Negotiation -- 6/30/79, 7111/79 -BSG
(>udd>m>bsg>fnp-echnego.text, HIT-MULTICS/System Ml
(AI:DLW2;BSGFNE >, Al. ITS)

This paper describes the scheme devised_ by Jerry Stern and myself
to move the responsibility for ''trivial Emacs echo'' into the FNP.
Lee S. Parks (MIT at the time, Lawrence Livermore Labs now) and Earl A.
Killian (Bolt, Beranek, and Newman) also contributed ideas related
and leading up to the current proposal.

The goal of this scheme is to eliminate the need for a Multics
interrupt for every character received when the only action of Multics
would be to accumulate and echo (send back to the terminal) that
character. (Such ''conditional negotiated echoing'' is necessary in any
managed-video environment, it is not something Emacs-specific). This
echoing is currently performed by the interrupt side of the ring zero
teletype dim (MCS, Multics Communications Sfstem) when feasible. That
scheme, now part of Multics (as of Release 7.0), is described in

>udd>m>bsg>rO-echnego.text
(MIT-Multics and System M, Phoenix)

DLW2;BSGROE >
Ci-1IT-AI PD!'-10)

That document is prerequisite reading for comprehending this paper.
The present scheme is built upon that scheme, is an integrated
extension to it, and cooperates with it.

The' current scheme fits within the architecture of "Ring Zero
Demultiplexing'', which is a scheme put forth in Release 7.0 whereby a
hierarchy of software levels called ''multiplexers'' are interposed
between the user's physical terminal and the common code of MCS. For
example, the code which manages the communications processor is a
multiplexer (known as ''fnp multiplexer''), which manages most TTY
channels. Ring Zero MCS does not call fnp~multiplexer directly, but
rather via a standard set of interfaces (channel manager), specifying
the device-index of the terminal under considera1ion. Channel manager
realizes that fnp multiplexer is responsible for that terminal~ and
dispatches to the-latter. Similarly, when fnp multiplexer processes an
interrupt from the communications processor, i1 determines which
channel is involved, and calls the channel manager interrupt entry to
call the interrupt side of ring zero MCS (tty interrupt) to do ''TTY
interrupt-side processing", specifying one of-a standard repertoire of
''interrupt types'' along (perhaps) with data received from the
front-end. Fnp multiplexer may be thought of as a procedure
multiplexing and de-multiplexing the single interface to the
communications processor.

The point of this ''Multiplexer'' protocol is that a device such as
a terminal concentrator may be attached to Multics via one channel of
the Front-End (or even some other path into Multics), and have its
demultiplexing/routing mechanism managed automatically as part of this

scheme. If such a terminal concentrator exists, requests made by (,
ring-zero MCS to control (e.g., output to) terminals on it will be
forwarded by channel_manager to the concentrator-manager procedure,
which will perform the necessary encodings as required by the
concentrator's protocol, and call channel manager recursively to pass
the new data an to fnp multiplexer to conlrdl the actual channel.
Similarly, interrupts received by fnp multiplexer for the concentrator's
channel will be forwarded by channel ~anager not to tty interrupt, but
ta the concentrator-manager proceduri. The latter will-interpret the
received data, and call channel manager to invoke tty interrupt for the
appropriate terminal. -

It is via this means that arbitrarily-nested multiplexed
communications channels may be supported, as long as the
multiplexing/demultiplexing prdcedure exists within the supervisor.
The set of calls from Ring Zero MCS, or lower-level multiplexers, to
each ''multiplexer" consists of calls to read and write data, and peform
a well-defined set of "control orders'' upon the channel. Each
multiplexer has the right to perform or refuse ta recognize any of
these control orders, indicating which via a status code. The set of
calls from the interrupt side of the multiplexer back to superior
multiplexers, or the interrupt side of Ring-Zero ~1CS, consists of the
set of "interrupts", some with data, some without.

It is within this architecture that the FNP Echo negotiation (.
(or more accurately, Echo negotiation by multiplexers) is designed,
It consists of a new repertoire of control orders to multiplexers
and interrupts from multiplexers, via which echoing by the multiplexer
is managed in an organized way .

. --
In this scheme, a multiplexer either "knows haw• to perform

negotiated echo, or does not. Supporting negotiated echo means
possessing the ability to accept a break-character table, and echo
characters according to it, until one of the "echo negotiation break
conditions'' described in the previous paper are encountered, in
response to the new control orders. The FNP (via fnp multiplexer)
knows how to echo (which we will take to mean ''negotiited echo via this
protocol"). This specifically does not mean that multiplexed channels
that happen to go through the FNP ''inherit" this ability: they do not.
for channels whose multiplexers cannot support this protocol, ring zero
MCS is prepared to perform the echoing itself as it does today. As it
turns out, ring zero must be prepared to perform this echoing even for
multiplexers that do support the protocol.

·The multiplexer which supports negotiated echo will, when so
requested, echo characters as they arrive from the terminal and not
hand them to ~CS until one of the echo negotiation break conditions is
recognized by it. Inception of echoing by the multiplexer is started
by a call from MCS, when MCS is told to begin echoing, and other
conditions are ripe. Input characters are handed by multiplexers to
MCS via the ''ACCEPT INPUT'' interrupt (''interrupt'' as defined above in
the multiplexer/MCS layering). In addition to the input characters,

Page 12

'.

the ACCEPT INPUT interrupt conveys (today) a bit, "break character"
which states whether or not a "break character" (normally CR, LF, etc.)·
was placed in the input by the multiplexer. In ''breakall mode''
(character-at-a-time processing), every such character delivery today
has this bit ''on''· Under the new protocol, for a multiplexer which
supports negotiated echo, this bit is used t·o indicate whether the
multiplexer itself echoed t.he characters in this delivery. If the bit
is on, the delivery consists.of characters none of which were echoed by
thernultiplexer; the multiplexer may decide for any reason (e.g.,
internal buffer shortages, internal races, etc.)'"tQ stop echoing (as
can ring zero vis-a-vis ring 4). Of course, it must stop echoing for
the defined echo negotiation.break conditions. Tf'the
"break character" bit is off, the delivery consists of characters all
of which were echoed by the multiplexer, except for perhaps the la~
character of the delivery. MCS must determine, for such a delivery,
whether the last character of such a delivery was capable of being
echoed by the multiplexer, and if so, assume that it was, dtherwise
not. This "wart" makes it u:rnecessary to make two distinct deliveries
(to distinguish the echoed from non-echoed characters) every time a
break condition is encountered.

Whe~ Ring Zero MCS receives an echo-break ta~le from ring 4, it
will attempt to ship the break table to the Multiplexer via a new
control order ("set echnego break table"). By virtue of the 1.iay
negotiated echo (in-generalT worki, MCS (Ring Zero or otherwise) cannot
be in the echoing state when this table is set. Thus, both Ring Zero
and the multiplexer (e.g., the FNP) will have an appropriate (and
identical) break table when the the call to begin negotiated echo is
made.

When·Ring Zero MCS is called upon to begin negotiated echo
(echo negotiate get chars, as in the previous paper), and has no
characters to ·deliver immediately (already accumulated), it calls upon
the inferior multiplexer to "start negotiated echo'', via a control
order, also specifying the number of characters left on the line, as in
the protocol of the previous paper. If this control order is refused
(the multiplexer does not support the new protocol (of course,
fnp multiplexer in specific, does)), ring zero proceeds as today, with
interrupt-side negotiated echo. If the multiplexer goes along with the
order, the channel is marked (in the ring-zero echo data) as having a
multiplexer knowledgeable about the protocol. In either case, ring
zero will enter the ''ring zero echo state" (of the previous paper).

After this operation has been performed, the multiplexer (e.g.,
the FNP) will either be echoing characters or not: by virtue of the
synchronization protocol (to be described), the multiplexer will either
have honored the request or not. MCS will not know whether the request
has been honored or not until characters arrive from the multiplexer at
the MCS interrupt side.

If the multiplexer delivers up a shipment of characters with the
''break character'' bit on, either the request was not honored, or the
specifTc multiplexer does not support echo negotiation, the multiplexer
decided randomly (i.e., for internal reasons) to stop or not start

Page 13

echoing, or the first character in the delivery is a break character or (
exceeds the length of screen left: in any case, the delivery is
entirely of non-echoed characters. These cases are indistinguishable
from each other and from the only case today when in the ring zero echo
state, and handled identically as today. The delivery is scanned,
a posslble leading prefix of echoable characters echoed by ring zero,
and the characters made available (if ring zero leaves the ring zero
echo state while processing them) to ring 4, which would then be woken
up.

If the multiplexer delivers U? a non-empty shipment of characters
without the break character bit on, and the specific 1jultiplexer has
been found to be inowledgeable about multiplexer echo negotiation
(i.e., earlier accepted the ''start negotiated ecl10'' control order) all
characters except the last in the shipment are known to have been
echoed by the multiplexer, which has apparently honored the order call
which was issued at the time ring zero went into t!1e echoing state.
Thus, this only possible if ring zero is in the echoins 3tate. Those
characters are counted by ring zero as "having been echoed by ring
zero" (as "far is ring four is concerned) and are not ~hoed by ring
~· The last character is checked for stopping ring-zero echo, and
if it would not stop ring zero echo, is treated as one of the
multiplexer-echoed characters. If it would stop ring zero echo, it is
processed as today, indeed takes ring zero out of the echo state,
and causes ring 4 to be woken up, as today. (

Whenever the multiplexer delivers to the Ring Zero HCS interrupt
side a character that takes ring zero out of the echo state, the
.multiplexer itself will be known to have stopped echoing. Thus, ring
zero leaves the echoing state after the multiplexer stops echoing.
Note also that ring zero enters the echoing state upon receipt of the
echo negotiate get chars call, which is before the "'ultiplexer
enters its echoing-state (upon processing the receipt of the control
order sent at the time ring zero enters the echoing state. Thus,
the multiplexer's echoing-state interval is completely and properly
contained within that of ring zero.

There is an implicit race condition associated with the start of
Multiplexer echoing: when ring zero enters the echoing state and sends
the order to the multiplexer to begin echoing characters, ring zero (or
ring 4, for that matter) does not know whether or not the multiplexer
has processed some input characters, and sent them on their way, which
have not yet arrived in ring zero. This is not unlike the case today
where characters have been received by the multiplexer and not yet
handed to ring zero when ring zero enters the echo state. Today, these
characters will eventually be processed (they will be the next
characters to be prdcessed) and no harm is done. Yet, when the
multiplexer has the ability to echo, the order to start echoing may be
invalid when received by the multiplexer if the latter has processed
characters not yet seen by ring zero. If these characters are
echoable, the ring zero interrupt side would attempt to echo them
(which would be in the wrong order with echoing being done by the
multiplexer). If they are not echoable, the order for the multiplexer
to start echoing is in error, for the unprocessed characters may

Page 14

(

produce output (when processed by rlng 4) which must precede any
echoing done by the multiplexer (e.g., cursor positioning, buffer
switching, or any arbitrarily complicated request with arbitrarily
complicated effects on the screen.

Thus, the multiplexer must not start echoing (i.e., not honor the
order to start echoing) if it has processed (but not had received on
the ring zero interrupt side) characters at the time the
start negotiated ech6 order is received at the point which processes
characters. This determination is made by the ''input processor'' of
the multiplexer based upon a value called the synchronization counter
sent with the start negotiated echo control order: the value sent by
ring zero is the count of all characters received by the ring zero
interrupt side since the last character echoed by the multiplexer.
The multiplexer input processor will also count characters processed by
it since it last echoed a character. Since the start negotiated echo
control order can only be received when the multiplexer is not in the
echoing state, any multiplexer-but-not-ring-zero processed characters
could not have been echoed.by the multiplexer. Thus, the equality of
the multiplexer input processor's count and the count received from
ring zero in the start negotiated echo control order is necessary and
sufficient reason for the multiplexer to enter the echoing state, and
begin echoing characters. If the counts are not equal, it must be the
case that non-echoed characters are ''in transit'', and the order must
not be honored. Ring zero's shipped count can only be less than the
multiplexer's, or equal: it can never be greater.

The above protocol has the effect of multiplexers starting echo
only when there are no characters. ''in transit'' between the input
processor and the ring zero interrupt side. This would have the effect
of each rfng 4 echo negotiate get chars being entirely echoed by ring
zero or the multiplexer, as tTiere-be characters in transit or not at
the time of the receipt of the start negotiated echo control order
by the multiplexer's input processor: We would-like the multiplexer to
perform as much echoing as possible, even if the start of this
echo negotiate get chars lost the race condition. Thus, when ring
zero-processes-(anci echoes) an entire delivery of echoable characters
from a multiplexer which claims to know how to perform negotiated echo,
it will (after having so done) send out another start negotiated echo
control order, which again, may or may not succeed when it reaches the
input processor.

There is a fairly subtle problem here when long communicati~n
lines or packet-switched networks present a time delay between the
Multics Central System and the echo-negotiating processor that is
longer than the inter-character typing time. If the typist continues
to type faster than the communication line/system can send characters
and receive the control orders, there will always be characters ''in the
pipe", and not only will all the start_negotiated_echo control orders
fail, but more interrupts/communications than today will occur due to
the extra control order at every such character! Thus, until the
typist scratches his or her head, etc., the system can never
synchronize, and will generate extra overhead! With the FNP doing
echo-negotation, this should not be a problem, as the round-trip

Page 15

.. '
•) ...

response time of the network from the FNP through ring zero and out (
again to the FNP is substantially less than an input character-time.
(Note that line speed is completely irrelevant: only the
inter-character time of the typist is an issue).

Another thorny point of the present scheme is the initialization
of the synchronization counters: If they count characters processed
since the last multiplexer-echoed character, what value are they to
have if the ~ultiplexer has never echoed any characters? It will never
be able to start echoing, since successful inception of echoing depends
upon the values of the synchronization counters. This is solved by
another new control order, ''init echo negotiation", which must be
supported by all multiplexers supportTng echo negotiation. Ring Zero
MCS will maintain, for each channel which has ever dealt with echo
negotiation, a ''synchronized" flag, initially off. As long as this
flag is off, received characters are not counted against the
synchronization counter. When a call to echo negotiate get chars is
made upon ring zero, and there are no undelivered (to ring lj'),
characters in ring zero, the "synchronized" flag will be inspected. If
on, action,, will proceed as above. If off, new control order will be
issued to the multiplexer. If not honored, ring zero enters the
echoing state as usual, knowing that the multiplexer will not ever

·echo. If honored, the echoing state is not entered. Characters will
arrive, non-echoed, from the multiplexer-;-ii"nct cause ring 4 wakeups. At
the time the multiplexer's input processor (which maintains the (
multiplexer's synchronization counter) receives the
init echo negotiation control order, it zeroes its synchronization
counter, begins counting characters (it must be in the non-echoing
state) thereafter, and sends a new type of interrupt to Ring Zero MCS,
ACK ECHNEGO START. When ring zero receives this interrupt, it zeroes
its-synchro~ization counter, turns on the ''synchronized'' bit, and
begins counting received non-echoed characters. Characters are
currently not being echoed: they are being delivered to ring 4 unechoed
as they arrive. The first character received in ring 4 will
cause ring 4 to promptly make another echo negotiate get chars call (as
ring 11 is still in its echoing state)' and-all proceeds as above, when
synchronized. ~-

One more service needed of MCS echo negotiation is the ability to
stop i·!CS echoing on demand of ring 4, when the latter receives some
non-keyboard-initiated event (e.g., a console message) which will
affect the display. When such an event occurs, ring 4 will call into
ring zero to stop echoing, and make calls to determine precisely what
has been echoed, i.e., what is on the screen, with the certain knowledge
that MCS will echo no more until instructed to do so.
Today, this is done'{"idea due to Spencer Love) by an
echo negotiate get chars call 11i th zero "screen length left". Ring
zero~ when so called, will return what it has received, indicate how
much it has echoed, and stop echoing in a unitary operation. The zero
screen length left will prevent it from re-entering the echoing state
(or staying in it), which it would otherwise do. The complex scheme
described in rO-inter.text (BSGROI >)was never implemented, and was
discarded in light of this superior idea.

Page 16

(

When multiplexer echoing is involved, not only ring zero, but the
multiplexer, must leave the echoing state when such a call is made.
Although ring zero could leave the echoing state instantly when such a
call is received, ring 4 cannot proceed knowing that echoing has
stopped until there is positive verification that the multiplexer has
stopped echoing. Thus, the following protocol has been devised: At the
time of an asynchronous ring 4 event (Emacs interrupt), Ring 4 will be
prepared to try and retry the call to call
hcs_$echo_negotiate_get_chars with a screen-length-left in a loop,
until the entry indicatest that echoing has indeed stopped. The entry
will return a zero code and actually return characters if echoing has
stopped, or return error table Sline status pending if it has not in
which case ring 4 is expicted 1o blo~k. In this way will ring 4 ~ait
for the multiplexer to acknowledge stopping echoing. Upon receipt of
such a call, ring zero will, if in the echoing state, and has not
already done so, send out a new control order to the multiplexer,
"stop negotiated echo", and set a bit saying that it has done so. If
called in this way when in the echoing state, and the order call is
supported, ring zero Will return error table $line status pending.
This code ,;;ill be returned for each such call until the echoing state
is exited as is to be described. When the multiplexer input processor
(which does the actual echoing) receives this control order, it will
stop echoing (leave its echoing state), having echoed and forwarded all
it is going to echo) if in its echoing state, and send another new type
of interrupt, ACK ECHNEGO STOP, to the MCS interrupt side. The MCS
interrupt side will receive this after it has processed all characters
processed by the multiplexer input processor before the latter received
the control order, and thus, ring zero knows at this ti11e exactly ho;i
1nuch was echoed and that no more will be echoed. At this time, the HCS
interrupt side takes ring zero out of the echoing state, turns of the
bit saying that the control order was issued, and wakes up ring 4.
Ring 4 wakes up, retries the call, receives a zero error code, and real
characters (including a count of how many were echoed), and echoing
does not restart, because of the zero screen-left passed in as input on
the last (indeed each) of these calls.

One further point needs be mentioned. A Multiplexer may find that
it cannot honor a start negotiated echo control order because it has
output which it has already accepted from Ring Zero MCS queued
internally. fnp multiplexer, for instance, cannot send the control
order to the FNP-until the internally queued output is taken by the
FNP, lest echoed output, echoed by the FNP, appear in the wrong
sequence with respect to Multics Central System output. The
multiplexer will, in this case, return the code
error table $invalid write to Ring Zero MCS, which will set a special
flag bit indicating that when the multiplexer asks for more output (via
the SEND OUTPUT interrupt), another attempt is to be made to send the
control order to the multiplexer before any more output is given to it.
Such a ''failure'' is not considered to be a case of the multiplexer
rejecting (or not honoring) the control order. This scenario will
almost certainly occur in the case mentioned above where a second
attempt at synchronization for a given echo negotiation causes a
start negotatiated echo control order to be sent after ring zero has
echoed characters following a muliplexer synchronization failure.

(E /.I»)

(1HJ JJ)
Page 17

(

