
F. J. Corbato
Massachusetts Institute of Technology

19 A Paging Experiment
with the Multics System

Paging was first introduced in the Atlas computer' and promptly had
great inftuence on system designers, for paging allows the solution of
two problems in a systematic way: (I) It is possible to execute programs
that are only partially loaded into primary memory or that require
primary memory space larger than that available, and (2) It is possible
to interrupt and remove programs from primary memory and later
restore them with minimal storage allocation difficulties. These issues
become especially important when one designs large-scale multiple
access systems in which multiplexing among user programs, which are
competing for primary memory, is generally the case. Despite the
obvious benefits that can result from paging, there is also a danger of
extreme degradation of system performance whenever excessive paging
activity occurs. 2 •3 System degradation as a result of paging is, of course,
caused by a mixture of overall system design (e.g., a relatively small
core memory) and the particular paging strategy employed. Since there
still is not a great deal of insight into paging strategies, it is valuable to
examine them so as to isolate this component of the general problem.

Introduction

Paging strategies and algorithms have been studied previously, for
example, by Belady.4 From these results and others, it is clear that there

• Work reported herein was supported (in part) by Project MAC, and M.I.T.
research program sponsored by the Advanced Research Projects Agency, Department
of Defense, under Office of Naval Research Contract Number Nonr-4102 (01).

217

218 F. J. Corbat6

is considerable statistical fluctuation in performing experiments, and
more importantly, that there is a dependence on the characteristics of
the program samples chosen and the computer environment in which the
programs are operated. The strength of this dependence is still not well
understood and is one reason for the present study. Moreover, because
the Multics system5 contains many radical departures from previous
systems, it is a good candidate for investigating the invariance of results.
Some of the departures that could easily affect paging behavior are: the
use of recursive and pure procedures, the use of segmentation, the
employment of a PL/I subset as a language for system programming,
the homogeneous paging of much of the supervisor on the same basis
as user programs, as well as the relatively large amount of pageable
memory, and the particular page size.

With the above motivation for paging studies, it is important to
recognize the goals and limitations that are being considered. It is, in
principle, possible to design computing systems where all paging
sequences are specified by the programmers. In this way, one would
obtain more effective operation with near optimum sequencing of
programs and data to and from secondary and primary memory. How
ever, such a procedure is in general impractical in the Multics sytem for
a variety of reasons; one immediate obstacle is that the system is
designed for the simultaneous multiplexing of multiple users and
processors who in tum share a single copy of all common procedures or
data. Thus a procedure may be simultaneously a member of several
processes (i.e., programs) each with different paging specifications. But
even beyond this fundamental difficulty, there is the inconvenience to
the programmer of determining and analyzing program behavior. Even
granting that he were able to do it accurately and that he could specify
data-dependent variations, there is still a problem that such specification
represents unwanted clerical tedium. Thus, in large systems such as
Multics, there is an important need for an automatic paging strategy
that adapts to all situations, changes of programming habits, and even
variations in the programming style or sharing patterns among the user
population.

Having established that an automatic paging strategy is desirable, it
also follows from the above considerations that such a strategy is
constrained to using past performance and events to predict the future.
It is only to the extent that there is a correlation of past and future
behavior that a paging algorithm can have any effect. A key strategic
question that a paging algorithm must answer whenever a new page is
needed is: "Which page should be removed from core memory?" Two

A Paging Experiment with the Multics System 219

possible strategies of page removal are those of first-in-first-out (FIFO)
and least-recently-used (LRU). In the case of the FIFO algorithm, the
justification is that it is easy to implement; it is particularly valid in
those cases where pages are brought in for a brief initial burst of activity
and then abandoned for long periods. In the case of the LR U algorithm,
it is not obvious how to implement it precisely without expensive
hardware design assistance or without incurring paging overhead several
orders of magnitude greater than can be tolerated; nevertheless, the
LRU paging strategy is probably a good one since one would expect a
high correlation of least-recently-used pages with pages unneeded by a
program in the immediate future.

The Multics Paging Algorithm

In the Multics system a paging algorithm has been developed that
has the implementation ease and low overhead of the FIFO strategy and
is an approximation to the LRU strategy. In fact, the algorithm can be
viewed as a particular member of a class of algorithms which embody
for each page a shift register memory of length k. At one limit of k = 0,
the algorithm becomes FIFO; at the other limit as k -+ oo, the algorithm
is LRU. The current Multics system is using a value of k = 1, and it is
the purpose of the present study to explore the effect of variations of k.

To understand more clearly the significance of k, a simplified view
of the Multics algorithm is first given. The algorithm that is called upon
whenever a new page is needed keeps track of all potentially removable
pages with a pointer into a circular list, an example of which is shown
in Figure 1, and cyclically evaluates each page for either retention or
replacement by the new page. Each page has associated with it a usage
bit in its page table entry and the usage bit is turned on (i.e., set to 1)
by the processor hardware whenever the page is referenced (i.e., read or
written). Whenever the algorithm examines a page entry, it extracts the
associated usage bit and enters it into the high-order position of a
k-bit shift register after shifting the contents of the register one bit
position lower. Then if the shift register is nonzero, the page is retained;
if the shift register is zero, the page is replaced by the new page. In either
case the usage bit for the page is turned off and the circular list pointer
is advanced.

Some properties of this class of algorithms can be deduced from the
above description. It is clear that the case of k = 0 is nothing but the
FIFO algorithm. Further, ask increases, the pointer of the circular list
must on the average revolve k times as far as it does in the case of k = 1

220 F. J. Corbat6

commutating pointer for
replenishment of th•
free poge I ist from the
replaceable page list

(8) first- usage bit set

Q not recently used, not modified

() recently uttd, not modified

<D not recently used, modified

e recently Ultd t modified

Figure 1. An example of the replaceable page list.

to yield as many page replacements. For large values of k, the mechanism
takes on the character of a periodic sampled-data system where the
number of leading (high-order) zeros in the shift register of a page is a
direct measure of the number of cycles through the list since the page
was used and hence the approximate time; in this way the LR U algo
rithm is reached in the limit.

An important aspect of this class of algorithm is that the overhead
of operation increases with increases of k. It is therefore possible to
engineer a practical algorithm by adjusting k to a value such that the
reduction in page replacements due to the algorithm's improved
predictive properties is just balanced by the increased overhead.

A critical aspect in the design of a paging strategy is the maintenance
of stable operation under transient program behavior. Many of the
algorithms studied by Belady have the property of cyclic performance

A Paging Experiment with the Multics System 221

variations in that periodically all pages have their usage bits reset
simultaneously. Similarly, an early version of the Multics algorithm
suffered from a periodic sampling of page usage bits which was only
loosely coupled with page replacement frequency. To consider this issue
further and to examine the stability of the present Multics algorithm, the
example of k = I is considered. In this case, the usage bits are distributed
on the average such that half are on and half are off. For if the circular
pointer sweeps through the usage bit I, it will leave behind it the usage
bit 0. Conversely, when usage bit 0 is swept through, usage bit 1 is left
behind since the replacing page brought in will in the case of demand
paging certainly be used. Furthermore, with periodic page replacements,
if there is an excess of zero usage bits, the pointer rotation rate will slow
down and more one bits will be created; conversely, for the opposite
case, the pointer rotation rate will speed up. Thus, the algorithm's
decision making mechanism, because it is synchronized to the traffic of
page replacements and by its design contains negative feedback, is quite
stable in its performance.

In the area of algorithms used by system programs, it is easy for
misunderstanding to arise and for nontrivial aspects to be overlooked.
For this reason a more detailed view of the precise mechanism of the
Multics algorithm is given in Figures 2 and 3. As will be noted in the
following explanation, several additional refinements over what has
already been discussed are needed to create a working strategy.

Figure 2 gives the flow of control which occurs when a program finds
a page needed from secondary storage and a page fa ult occurs. The
initial test in Box 1 normally takes the " no" branch. Because its
purpose is easier to understand after the main logic of the algorithm is
established, an explanation is given below rather than here. In Box 2 a
test is made to ascertain if the pool of empty blocks of primary storage
is nearing exhaustion. (A free block pool is used so as to be able to
service a page fault more rapidly without waiting for a page to be
removed from primary core memory.) If the free block pool is low, Box 3
is entered to replenish the pool. (Figure 3 represents an elaboration of
Box 3.) Control next passes to Box 4 where a free block is designated
for the new page and a pointer to this block is entered into a list of
pages being read (i.e., "pulled") into core memory. In Box 5, the
location on secondary storage of the new page is determined from a
master data base called the Active Segment Table (AST) and the
secondary storage drum controller is directed to transmit the page into
core memory. However, before this transmission is complete the pro
gram in Boxes 6 and 7 proceeds to do several bookkeeping steps for all

222 F. J. Corbato

•

pop fault

move pointer from head
of th• frM block list
to th• POOi pull lilt

look up in th• AST the
location in secondary
1tor1 of the poo•;
Initiate pull

remove pointers of completely pulled pao•• from
pull list to the heod of the reploceobl• poo• list;
tum first-time bit on of pulled paoff; modify
poo• table 1ntri11 to point to pulled paou; notify
and wakeup waltino proce1111 of pulled poo••·

7
remove pointers of completely
pu1hed pao•• from the push
I l1t to th• head of the
free block li1t

• • •
(proc111or multiplexed with other proc11111)

• • •

notification of
completely pulled
pao•

Figure 2. The Multics page fault algorithm.

A Paging Experiment with the Multia Synan 223

oet n more bl ock1
for free block list

]"
~ Ht counter

]1 i •I

]"
s pick up pointer to first paoe

of replaceable pooe list

l
yes [ill

is the first -
time bit on?

l" no

~ turn first - time P!J insert value of u109e bit
bit off into shift rqi1ter of pafjje

[3 turn usaoe [!!I turn usao• bit
bit off of paoe off

~ is . shift
reoister = 0?

j

~
no yes -- place paoe pointer ot end

of replaceable paoe list

,
l!!I modify pa9e table entry to cause

po9e fault if pooe accessed a9ain

§I
WOI po9e modified
while in core?

no lyes

~ put block in [!3' put po9e in
free block list I"" pooe push I ist

l]"
~ i~i+I 1-t- ~ look up in AST the location

in secondary store for the

~ pa9e to oo; initiate push
i•n? l

] no]" yes

(return)

Fi.pre 3. Replenishment of the free block list.

224 F. J. Corbato

the drum-core transfers that have been completed since the drum status
was last checked. One step is the switching of the page pointers from the
pull list to the head of the replaceable page list. The reason for selecting
the head rather than the tail of the list is that in addition a special
" first-time" I-bit switch is turned on for each of the newly pulled pages.
As will be seen later in Figure 3, this switch makes it possible for the
algorithm to ignore for a few page faults the initial burst of references to
a page before it begins to monitor usage. (Otherwise a new page would
always appear used after the first pointer rotation since the attempt to
reference it is what triggered the pull.*) After setting the switches, the
page table entries for the pages are adjusted so that attempts to reference
the pages will succeed and the other processes which had been waiting
for the arrival of pages now in primary storage are scheduled for
processor service. Similarly in Box 7, the blocks corresponding to the
pages which have been removed (i.e., "pushed") from core memory to
the drum are transferred to the free block list. At this point the process
is unable to proceed until its needed page is pulled; hence in Box 8,
control is transferred to the processor multiplexing section of the
supervisor to await notification from another process. Finally at some
later time when the page is pulled, another process schedules the
original process for a processor, and in Box 9 control is returned to the
point where the page fault occurred so that processing may resume as if
uninterrupted.

The initial test in Box 1 only takes the "yes" branch in those relatively
rare instances when a desired page is either being pulled into or pushed
from primary memory. This situation can come about from two cases.
In one case the needed page was in primary memory but became
sufficiently inactive that a previous page fault has initiated its removal
and the push is not yet complete. In the second case another process
has developed a need for the page and has already initiated a pull. In
either case, however, the ft ow of control is to Box 8 where the processor
is released until the page transit is completed. At this time the process
is restarted at the faulting location. If the page was being pulled, the
process proceeds; if the page was being pushed, a page fa ult occurs and
a fresh attempt is made to obtain the page.

• It should be noted that for the .. first time" bit mechanism of the algorithm to
be effective, the she of the free block pool should be somewhat larger than the number
of processes being multiprogrammed; if this is not the case, the process which causes
a page fault will probably not have an opportunity to run before the usage bit of the
page in question is reset during free block pool replenishment. Under such circum
stances the "first-time•• bit mechanism can be removed with little effect on the overall
algorithm.

A Paging Experiment with the Multics System 225

Figure 3, which is largely self-explanatory, shows the flow of control
required to replenish the free block list with n more blocks. (In Multics,
n is currently set to a value of 3.) A few items are of note however. One
is that the test in Box I 2 is where the first-time switch allows the initial
burst of usage of a pulled page to be ignored. Another item of note is in
Box 20 where a test is made to avoid pushing pages which have not been
modified while in core. (For this purpose the processor hardware assists
by setting a modified bit in the page table entry whenever a page is
modified.) In any case, however, control returns from the replenishment
section when n blocks are selected for the free block list.

Finally it should be noted in passing that the algorithm presented in
Figures 2 and 3, although basically correct, lacks many critically im
portant features which are present in the version in the Multics system:
These ignored features are needed for proper treatment of several
complications. Some are

I. There are additional mechani m needed for egment de criptor
table and for page table . (In Mui tic the e page are either of two
ize : 64 or 1024 word .) Jn general there mu t be machinery for
egment management.

2. Mechani m are needed for the dynamic "wiring down" and
" unwiring" of page in core memory for purpo e uch a page
table and preproce table .

3. Data ba e interlock mechani m and protocol mu t bee tablished
to allow multiple proce ors imultaneou ly to operate and take
page fault .

4. Special attention mu t be paid in the detail of the algorithm o a
to allow imultaneou haring of the page of a egment by different
proce se .

5. Refinement are needed to allow for pecial ituation uch a
page which are created (with zero) in growing egment .

6. In rare in tance the free block pool can become empty due to
tati tical fluctuati n and pecial con ideration mu t be made.

7. In the intere t of coding efficiency certain mechani m are not u ed
exactly a de cribed. For example, the pu h and pull li t are not
formally created but are effected by the u e of indicator in the
element of the replaceable page Ii t.

8. In the ca e where the paging drum ha c mpleted everal pulls but
no page fault have occurred in other proce e for an inordinate
period of time, pecial pr vi ion mu t be made to re chedule for
execution the proce e which can proceed.

226 F. J. Corbato

The Experiment and the Results

One of the purposes of this paper is to describe an experiment with
the Multics paging strategy in which the value of k, the shift register
length, was varied. To perform the experiment it was necessary to
modify the system programs slightly but not in a way that seriously
perturbs the results.

To serve as a test load, two cases were selected. The first case was the
standard initialization computation which the system always performs
to bootstrap itself in from the system tape, generate the configuration
dependent system environment, establish the paging and segmentation
machinery, and then proceed to load the remainder of the system into
secondary storage. Although there is a great deal of paging in this
case, an objective is to establish whether or not the computation is
typical.

The second case of the paging test was a short program written for
the purpose which proceeded to call automatically a sequence of about
ten basic, noninteractive commands. It was not felt that any more
careful choice of sample was warranted since the Multics system is still
undergoing rapid development and evolution. Moreover, past ex
perience indicates that the commands chosen represent typical opera
tions of a user population.

The environment of the experiment was a reproducible one-user, time
sharing system with a uniform page size* of 1024 36-bit words and a
replaceable page pool of about 170 pages. Five distinct runs were made
with different values of k and the values obtained are given in Tables 1
and 2. The page fault counts contain both those occurring explicitly
as page faults and those contained implicitly within segment faults. (A
segment fault occurs when there are neither pages nor segment page
table in primary memory.) The Central Processor Unit (CPU) times
given are those required to service the combined page and segment
faults and do not include either the user terminal typing time or the
delay due to the rotation time of the secondary storage drum.

It should be noted the average fault service times given are particu
larly large because of the present state of the Multics system at this time
(July 1968). A soon-to-be-implemented strategy of reducing the number
of effective segments by binding related groups together is expected to
lower the average fault service time by at least a factor of four to the

•The Multics system potentially could have other effective page sizes as well as
nonuniform page sizes. Future experiments may explore these directions although
none are now contemplated.

A Pagi1111 Experiment with the Multics System '121

neighborhood of a few milliseconds; the effect of this change will be to
reduce the differences between the results for different values of k.

Conclusions

In examining the results given in Tables 1 and 2, several conclusions

Table 1. Page Faults vs. CPU Fault Service Time in System Initializa
tion (total CPU time= 564.2 sec fork= 1)

Total CPU Fault
k Page Faults Service Time (sec)

0 8309 184.S
1 4250 107.9
2 4098 106.5
4 4205 112.5
7 4317 120.2

Table 2. Page Faults vs. CPU Fault Service Time in a Sample Set of
Basic Commands (total CPU time= 74.7 sec fork= 1)

Total CPU Fault
k Page Faults Service Time (sec)

0 3628 72.9
1 1659 36.4
2 1635 31.5
4 1598 38.7
7 1725 44.3

can be drawn. First it is clear that the two cases give similar effects and
that there is a dramatic improvement in going from k = 0 to k = 1.
Second, a value of k in the range of 2 to 4 appears to give a paging
strategy with the number of page faults down to a level where possible
further improvements are small compared to statistical fluctuations.
Third, when one examines the total fault service times, it is clear that as
k increases so does the computational overhead of the paging algorithm..
Since this latter basis is the pertinent one for comparison, the optimum
value of k lies in the range of 1 to 2. Fourth, with so little difference
between the results in the range of k from 1 to 4, a value of k = 1 is
indicated. The reason for the latter choice is because a lower value of k

228 F. J. Corbato

should produce an algorithm which is more stable and adaptive to
transient changes in paging behavior. Fifth and finally, there should be
some caution in extending the present results to other circumstances
since: (I) the results are based on a small sample, (2) the Multics system
may have properties which are uniquely its own, and (3) the system is
still evolving and changing rapidly.

Acknowledgements

The Multics system is being developed on a cooperative basis by
members of the Bell Telephone Laboratories, the General Electric
Company, and Project MAC ofM.I.T. The development and implemen
tation of the paging strategy has been principally done by a team led by
P. G. Neumann and R. C. Daley and including M. R. Wagner and
G. F. Clancy. In addition, A. J. Goldstein made early background
contributions, and F. J. Corbat6 assisted in developing the particular
method of synchronizing page usage monitoring with page fault
frequency.

The author would like to thank P. J. Denning, E.G. Coffmann, C. T.
Clingen, and R. C. Daley for helpful discussions. Appreciation is given
to J. W. Gintell and D.R. Vinograd who implemented the procedures
used to meter the fault processing data. Finally, special and warm grati
tude is extended to T. H. Van Vleck for his expert knowledge of Multics
and his assistance in performing the experiments in the face of the
extreme complexities which are present in the development of a large
system.

References

1. T. Kilburn, "One-Level Storage System," IRE Trant;. Electronic Com
puters, Vol. EC-11, No. 2 (April 1962).

2. P. J. Denning," The Working Set Model for Program Behavior," Com
mun. ACM, Vol. 11, No. S (May 1968).

3. P. J. Denning, "Resource Allocation in Multiprocess or Computer
Systems," (Ph.D. Thesis), Project MAC Report MAC-TR-50 (May 1968).

4. L. A. Belady, " A Study of Replacement Algorithms For a Virtual Storage
Computer," IBM Systems Journal, Vol. 5, No. 2 pp. 78-101 (1966).

S. F. J. Corbat6 and V. A. Vyssotsky, "Introduction and Overview of the
Multics System," AF/PS Conference Proceedings, Vol. 27, Fall Joint Com
puter Conference (1965).

