Panel: “The Multicians”

Moderator: Olin Sibert

Before Multics

Professor Roger R. Schell
University of Southern California
Multics Security Activity Timeline
3 Levels of Security Consciousness

#1 There is no Problem
Deny the Problem

• Common security consciousness before Multics
 – Only air-gap had basis for trust
 – Many people unaware of the threat
• As an ACM presentation put it:
 “Security is inherently different from other aspects of computing due to the presence of an adversary. As a result, identifying and addressing security vulnerabilities requires a different mindset from traditional engineering. Proper security engineering—or the lack of it!—affects everything”
• Subversion is likely witted adversary attack of choice
 – Demonstrated in Karger’s Multics security analysis
3 Levels of Security Consciousness

#1 There is no Problem
Ignore Threat (especial subversion)

#2 There is no Solution
Security Can Seem Overwhelming

• Willis Ware 1969 Report
• Recognized a witted adversary
3 Levels of Security Consciousness

#1 There is no Problem
 Ignore Threat (especial subversion)

#2 There is no Solution
 Devastating impact of vulnerabilities

#3 There is no Free Lunch
Reference Monitor Abstraction

Anderson Report Directly stimulated by Multics

- Precisely defined security policy
 - Discretionary (DAC)
 - Mandatory (MAC)

- Subjects
 - Active user surrogates
 - Process in a ring

- Objects
 - Passive data containers
 - Segments
 - Directories

- Authorization Database
 - Enforces security policy

- Audit Trail
 - Record of security-related events
Summary of 3 Levels of Consciousness

#1 There is no Problem
 Ignore Threat (especial subversion)

#2 There is no Solution
 Devastating impact of vulnerabilities

#3 There is no Free Lunch
 Systematic engineering to leverage Multics
Security Problems Illuminated by Multics

• Need for precisely defined and understood policy
 MAC (lattice); DAC (matrix/ACL) ; Application policy
• Witted adversary malicious subversion
 Trojan horse flow control; Class A1 to mitigate trap doors
• Security by obscurity – defense in depth
 Abstract interface supporting general computer utility
• S/W quality Optimism – non-rigorous arguments
 Logical internal design, e.g., 2-level scheduler, eventcounts
• Assume lazy attackers – “no one would ever do that”
 “Complete”, deterministic and repeatable behavior
So-called “Solutions” Exposed by Multics

• Lack critical hardware for security and performance
 Segmentation is crucial enabler, rings, manage processes
• Penetration and patch, without life-cycle protection
 Paradigm shift: no Class A1 security patches in years of use
• Non-rigorous mappings for user surrogates
 Reference monitor “subjects” – process-domain (ring) pair
• Imprecise information container notions, e.g., “files”
 RM “objects” – directly sharable, CPU addressable segments
• Security “features” in Monolithic operating systems
 Evaluable, precisely defined, composable TCB “subsets”
Security Engineering Gaps

• Rigorous logical argument policy is enforced
 Reference monitor, and implementation ("security kernel")

• How to prove the negative – never an insecure state
 Bell and LaPadula model “lichpin”, Multics interpretation

• Making highly secure system with MAC usable
 20 years experience – Pentagon, GM, Ford, NCSC

• Architectural longevity, e.g., user devices, embedded
 SCOMP SPM retrofit; GEMSOS “mini-Multics” on Intel x.86

• Systematic software engineering to support security
 HOL for OS, modularity, layering, abstraction, minimization
Summary of Security World Multics Faced

• #1 There is no Problem

 Witted adversary subversion is “inherently different”

• #2 There is no Solution

 “Best practice” and surveillance (back doors) can’t solve

• #3 There is no Free Lunch

 “Mere mortals” can engineer high assurance systems
 BLACKER, Oracle MLS DBMS, Pentagon MLS access, UK guard
Panel: “The Multicians”

Moderator: Olin Sibert

Before Multics

Professor Roger R. Schell
University of Southern California