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Abstract 
 
This document describes our investigation into software obfuscation for building Self-
Protecting Mobile Agents (SPMA). 

The original goal of the SPMA project was to develop automated tools to protect mobile 
agents from attacks by malicious hosts. In development of those tools, we realized 
obfuscation could not be relied upon to give a reasonable amount of security. Because of 
this, we redirected the SPMA project to studying obfuscation. 

Our conclusions include theoretical results about obfuscation and evidence that supports 
those results.  Our most important conclusion is that there is no general obfuscation 
problem (i.e. a definition and theory of obfuscation that will always apply).  We believe 
that all automated obfuscation is merely emulation; this will certainly be an area of future 
research. 

We conclude that if software obfuscation is to be useful, it must be employed for a 
specific purpose (not “obfuscate any program protecting all information”), and use 
fundamentally new ideas. Future theoretical work on obfuscation will have to define it 
clearly, and use a restricted set of programs, so that the result of Barak et al. [BGI+01] 
does not apply. 

In the course of developing obfuscation tools, we evaluated the properties of 
programming languages under several obfuscating transforms, concluding that strict type-
safe programming languages were the best for obfuscation. In addition, programs 
specifically designed to be obfuscated will give better results, as the programmers will 
avoid implementing unobfuscatable constructs. 

1 Introduction 
Mobile agent technology has the potential to revolutionize network software, but mobile 
agent technology is fundamentally security-limited.  Mobile agents could provide key 
information capabilities, such as autonomous global searching, information filtering, 
distributed sensing, price shopping, active networks, micro-transactions, manufacturing, 
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and large-scale system configuration.  As currently conceived, however, many mobile 
agent solutions cannot be adopted because of security threats: hosts and networks must be 
protected from malicious agents; agents must be protected from other agents; and agents 
must be protected from malicious hosts.  Of particular concern is that many agent 
applications require agents to execute on untrusted hosts that have an economic interest 
in modifying agent behavior or stealing secrets (like credit card numbers) carried by 
agents.  While substantial progress has been made in protecting hosts from agents (e.g., 
sandboxing [GMP+97], software fault isolation [WLA+93], proof-carrying code [Nec97], 
operating system access controls), and in protecting agents from other agents (agent 
separation implemented on hosts, defensive agent KQML interfaces), protection of agents 
from malicious hosts remains a major problem for agent technology.  The key question 
is:  How well can an agent be protected when it is running on a malicious host?  If mobile 
agents cannot be protected, of what value are they? 

Computer security studies methods to ensure that a computer system will behave the way 
the operator wants it to, instead of the way somebody else wants it to.  Mobile agent 
systems (and obfuscation in general) want to achieve the opposite: ensuring a computer 
system will behave the way the programmer wants it to, instead of the way the user wants 
it to. In order to derive security results, we make assumptions about the computers, 
networks, and software involved.  Traditionally the most basic of these assumptions is 
that software of our choice is running on our computer, and that we trust the hardware 
and all the lower-level layers of software, such as operating systems. Mobile agents 
cannot trust any of those. 

Our research initially aimed to provide a technical basis for building trustworthy agents 
that perform their missions with confidence even though they sometimes execute on 
untrusted hosts.  Several key requirements must be satisfied for agent systems to realize 
their potential: 

High Mobility.  Agents must be free to migrate to, and execute on, a wide variety 
of hosts that are unknown to the users who launched the agents.  Without such 
mobility, agents will be unable to perform the searching and commercial 
operations often envisioned for agent technology. 

Detached Operation.  Agents must operate autonomously, without the need for 
constant communication with users, and, preferably, without constant 
communication with trusted infrastructure elements which may or may not 
exist. 

Extended Deployment Periods.  Agents must function for extended periods of 
time, thus allowing users to launch long-term “watcher” agents, that take action 
only if specified criteria have been met, and other long-term service agents. 

Safe Execution.  Agents must be free from integrity attacks conducted by 
malicious hosts or other agents, and must be protected from faulty execution or 
non-execution by malicious hosts.  Agents will also be much more useful if they 
can carry secrets (such as cryptographic keys or user decision information, such 
as how much a user would be willing to pay for merchandise). 
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Realistic Infrastructure Requirements.  Agent properties must not rely on 
unrealistic infrastructure assumptions, such as the assumption that all hosts are 
trustworthy, that implementation algorithms will remain secret, or that every 
agent execution environment is implemented by a tamper-resistant hardware 
peripheral. 

These goals cannot be simultaneously met using current technology.   

1.1 Technical Approach 

We set out to develop tools that translate an individual software agent into a distributed 
set of tamper-resistant agentlets that is never entirely vulnerable to a single host, and that 
can detect and recover from compromise of a subset of its elements, providing strong 
protection by combining three core techniques: 

Distributed Agent State.  Each agent would be partitioned into a set of 
communicating programs (agentlets) executing on independent hosts.  Critical 
information would be spread across the agentlets, thus limiting exposure to any 
proper subset of the hosts. 

Obfuscation with Periodic Regeneration. Each agentlet’s code and data were to 
be obfuscated using a variety of techniques (e.g., randomly selected, but 
equivalent, algorithms and data representations). We initially believed that 
obfuscation could delay, but not prevent, subversion of agents via reverse 
engineering.  Consequently, we planned to have agentlets periodically expire 
and be replaced by differently obfuscated versions so that a successful attack on 
an agentlet was impossible before it expired.  Regeneration was going to use 
information from multiple agentlets (hosts), and hence not be vulnerable to 
reverse engineering by any single host. 

Monitoring and Recovery. Agentlets would be made self-monitoring and able to 
monitor other agentlets. Using challenge/response techniques, agentlets could 
automatically exclude compromised agentlets, report the identities of tampering 
nodes, and replace lost agentlets. 

1.1.1 Original Tasks 
Our initial plan was to carry out this research in three tasks: 

Task 1: Develop source-code translation tools to convert an individual software 
agent into a set of replicated communicating agentlets that collectively manage 
their navigation to avoid dependence on some hosts that may be colluding, as 
specified in an agent security specification describing the agentlet protection 
policies.  

Task 2:  Develop powerful object-code obfuscation tools that can be employed to 
protect the code of an agentlet from reverse engineering for some minimum 
time, in order to prevent reverse engineering and ensure that the obfuscation 
process itself was protected from tampering. Ensure that any progress an 
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attacker made in reverse engineering an old version of an agentlet conferred no 
useful information about reverse engineering a subsequent version of it.  

Task 3: Extend agentlets to employ fine-grained monitoring for tamper detection, 
and to use mutually-suspicious agreement protocols to identify and exclude 
potentially subverted agentlets, thus providing a basis for a community of 
agentlets to cooperatively protect themselves from host-based attack. Perform 
periodic re-obfuscation of all agentlets often enough that an attacker would be 
unable to ever get enough information to interfere with the agentlets. 

1.2 Accomplishments of SPMA Project 

We carried out and reported on the first two tasks, as follows: 

1.2.1 Agent division 
The team built and demonstrated an application of IBM's freely available Aglets agent 
system technology (www.aglets.org) that divided a mobile agent into a group of agentlets 
that cooperated to produce the result of the original agent. The Self-Protecting Mobile 
Agent toolkit takes the binary of an existing mobile agent, and with the help of an input 
policy and a library of mobile agent helper functions, transforms it into an equivalent 
collection of cooperating agentlets.  

The transformation of an existing agent into a collection of cooperating agentlets was 
achieved by exploiting the fact that agents in Aglets and other agents system have life 
cycles. The life cycles delineate creation, cloning, dispatching, and messaging phases in 
the agentlet.  By augmenting and controlling the code that initiates and handles these 
phases, we created the means to change an agent into a collection of cooperating 
agentlets, as described in our Architecture Report [BMK+01]. 

1.2.2 Obfuscation 
The team built a modular framework for manipulating Java bytecode, and wrote several 
powerful obfuscation operators for it. We extended the research of Collberg et al. 
[CTL97a], [CTL98a], [CTL98b], [CT00] and Wang et al. [W00], [WHK+00], 
[WDH+01] to obfuscation of Java programs, and built an extensible tool, JBET (Java 
Binary Enhancement Tool), that supports the obfuscation techniques they describe and 
additional obfuscation techniques proposed by us. Our tool and its techniques were 
described in our Obfuscation Techniques Report, [BDM+01].  
JBET is described in Appendix A. 

1.3 Weaknesses in the SPMA Approach 

To convince an agent creator to trust the system, we would have to provide an argument 
that the obfuscation was guaranteed unbreakable for some length of time, and that re-
obfuscation would occur before the agentlets’ protection could be defeated. The argument 
should include explicit assumptions about the resources an attacker might employ to 
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overcome the protection, and the scalability of the system’s protection with respect to 
number and size of agentlets, number and power of execution nodes, and 
communications bandwidth. The analysis should be clear about what is assumed to be 
secret: a system that depends on keeping the method of obfuscation secret from the 
attacker has more vulnerability than one that assumes the attacker may know the 
obfuscation method, but not the particular keys or seeds used to select the particular 
obfuscation.  

As we prepared to implement Task 3 of the original plan, we found several problems. 
The most serious problem was that we could not find a way to guarantee that any 
obfuscation method could resist deobfuscation for any specified minimum time. We also 
realized that there are several attacks against the agent system that give the attacker more 
time to deobfuscate and more ability to observe the agentlets than we had originally 
thought. 

1.3.1 Breaking Obfuscation 
We discovered a number of reasons to believe that obfuscation might not be an adequate 
protection mechanism for agentlets. 

In order for our scheme to be certain to work, we had to be able to ensure that an attacker 
could not deobfuscate an agentlet for some safe period given assumptions on the 
computing power available to the attacker. Without a proof that the agentlets were safe, 
the whole protection methodology reduced to wishful thinking. 

In an important paper at Crypto 2001, Barak et al. [BGI+01] discussed the impossibility 
of obfuscating programs. Their result showed that obfuscation was mathematically 
impossible, for a specific formulation of the problem, and raised the question of whether 
the methods we planned to use could work. Some theoretical claims by other researchers 
that certain obfuscation methods were NP-hard appeared to be based on incorrect 
reasoning [Schwab03]. 

We investigated the strength of our own obfuscation methods by building tools to 
deobfuscate code obfuscated by our most powerful methods, and discovered that it was 
disappointingly easy. Section 3 of this report describes these experiments. Further study 
of obfuscation methods proposed by others showed that a determined adversary could 
probably build similar deobfuscation methods for all such obfuscators.  

Most proposed obfuscation, including the methods we proposed, defends against static 
analysis of the obfuscated program. When we considered dynamic analysis of programs, 
often used in practical reverse engineering, we found that most obfuscation methods 
provided little protection.  

1.3.2 Rerun Attacks 
Our initial agent-obfuscation scheme assumed that periodic re-obfuscation of the 
agentlets would prevent attackers from learning anything about the obfuscated program. 
Further consideration found some attacks on this scheme that we would have to provide 
defenses for. 
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Since a program is ultimately controlled by the hardware it runs on, and COTS virtual 
machines and simulators are readily available which can do things like save machine 
state to disk, it is possible to isolate a program and replay execution scenarios as many 
times as is necessary to understand the program or find its weaknesses.  Obfuscation 
cannot prevent the program from being reverse engineered this way, however, it can 
prevent a malicious host from observing or predictably tampering with code and data in 
the running system. 

Depending on the obfuscation used, the locations of the code and data the attacker is 
interested in could be different between versions. Assuming an attack could not happen 
within a specific time of obtaining an agentlet, the attacker would always have to study a 
version that is obfuscated differently than what they would eventually attack.  If the 
attacker’s goal is to subvert a running system, reverse engineering through rerun attacks 
would allow them to discover whatever vulnerabilities the system had.  If their goal is to 
discover important algorithms, constants, or data that do not vary much, they could do 
that as well. 

Although such rerun attacks were not judged fatal to our scheme, they represented an 
additional issue that the agentlet coordination protocol would have to cope with. 

1.4 Revised Research Program 

We discussed the problems with our initial plan with our Program Manager, and decided 
to redirect the SPMA project to focus primarily on obfuscation issues for the last year, 
rather than mobile agent issues, without changing the project name.  This redirection was 
motivated by our realization that the mobile agent issues are tractable whereas the 
obfuscation issues have the potential to be show stoppers, and that not much work has 
been done to settle the big questions regarding obfuscation.  Much of the community's 
wisdom on obfuscation is ad hoc.  We believe that the most direct path to validating the 
Self-Protecting Mobile Agents architecture is therefore to focus on solid results regarding 
obfuscation strength when it is used as a defense against both static and dynamic 
analysis. 

We chose to orient this project toward answering the question, “when should programs be 
obfuscated?” If a program creator asks whether to obfuscate a program for the purpose of 
protecting some specific secrets or behavior, we should be able to advise him or her, 
based on the type of attackers expected and the kind and length of protection desired. We 
and the program manager felt that answering this question would be a very valuable 
research contribution.  

We identified three large unknowns with respect to obfuscation: 

• How to measure and understand the strength of an obfuscation method. 

• How much work can be imposed on the attacker, per unit of work by the 
defender. 

• The possible variation between different applications of a single obfuscation.  Put 
another way, if an attacker has deobfuscated a particular obfuscation of a 
program, how can we measure the advantage, if any, that this conveys to the 
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attacker when attempting to deobfuscate another obfuscation of the same 
program, or an obfuscation of another program by the same obfuscation tool. 

We investigated these issues, conducted experiments, and present our results in this 
report. 

2 New Problem Definition 
Obfuscation transforms a program into another program that has equivalent behavior but 
which is harder to understand. This report investigates the strength of the protection 
provided by obfuscation.   

Obfuscation has been proposed as the solution to problems such as protection of transient 
secrets in programs, protection of algorithms from use except in controlled ways, 
protecting protocols from spoofing, license management for software, temporary 
protection of digital watermarks in programs, software-based tamper resistance, and 
protection of mobile agents. 

Many have said that “security by obscurity” is not a solution to a security problem. The 
requirement that an algorithm’s secrecy is not required for the security of the 
cryptosystem is known as Kerckhoffs’ Principle1. Commercial obfuscation tools will be 
purchased or otherwise obtained by attackers, reverse-engineered, and then all the users 
of that tool will be compromised if it required secrecy of the algorithms; a key is required 
for obfuscation as well. 

Barak et al. [BGI+01] have shown that ideal obfuscation is “impossible.” That is, they 
have shown that there is no obfuscation method that always yields an obfuscated program 
that reveals nothing about the original. Ideal obfuscation is more than is necessary for 
many useful applications: an obfuscation method that raises the cost of reverse 
engineering sufficiently would adequately deter attacks on low-to-moderate value 
programs, and delay attacks on high-value programs.  For some applications, such as 
mobile agents, even a modest delay could be instrumental to a system’s survival. 

On the other hand, most currently available obfuscation practices provide protection that 
can be quickly and automatically broken. What we seek is a framework that allows us to 
reason about the strength of various kinds of obfuscation methods and the protection 
provided. 

The problems of protection of transient secrets, algorithms, and other phenomena within 
a program exist because conventional wisdom says that no guarantee can be made about 
the execution of a program when nothing can be guaranteed about its environment; it may 
be altered, debugged, traced, lied to, or rerun.  In short the problem is to restrict how a 
program can be used, while still allowing the uses that he creator wants.  One proposed 
solution to this class of problems is software obfuscation.  In general, software 
obfuscation refers to any technique for making software hard to understand or 
manipulate.  The idea is that although attackers are able to change memory, trace 

                                                 
1 Named after Auguste Kerckhoffs, 17th century author of La Cryptographie Militare (Military 
Cryptography). 
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execution, and otherwise manipulate the environment, they are not able to get any 
meaningful result from these techniques because they cannot determine what any 
particular byte of memory means, or what the program is doing at any particular point.  
The goal is to make the program so difficult to understand that the attacker will not make 
the changes needed to misuse the program, or extract the information he wants. 

It should be noted that obfuscation should be seen as a proposed solution to a class of 
problems, not as a problem itself.  One might propose a “general obfuscation problem”, 
i.e. to find an obfuscation transform that is universally applicable.  Such a transform 
would be able to protect any input given to it.  The resulting obfuscated program would 
be such that the only useful thing to do with it would be to run it.  Such transforms do not 
exist, as Barak et al. prove [BGI+01].  This does not necessarily mean that obfuscation is 
always useless, but it does mean that we must consider the security of each use case 
separately, carefully specifying what we wish to protect.  

2.1 Overview of the Problem 

We are considering obfuscation techniques that read in a program P, and an obfuscation 
policy p, then automatically generates a new, obfuscated program OP. 

Program
P Obfuscated Program

OP
Obfuscation
Transform

Policy
p

Understanding

Output

 

Figure 1 
Figure 1 displays the concept: both the original program and the policy are fed into a 
transformation procedure that generates the obfuscated program.  According to 
[BGI+01], after some period of time and expended effort, an attacker can gain some 
understanding of OP.  It has been postulated that the program can run safely for a limited 
time. [Hohl98]  In order to rely on obfuscation, we need to reason about how long the 
obfuscation can be trusted to protect the program. 

The original SPMA design required that OP have two key properties: 

1. given identical input data, the behaviors of P and OP are semantically identical 
at a specified interface, and 

2. the relationship between OP’s state and OP’s behavior is obscure to any 
observer who has not seen p. 

Property 1 merely asserts that, at some interface of interest (e.g., library APIs, system 
calls), OP either behaves exactly like P, or OP’s behavior has exactly the same effects as 
P’s behavior.2  If the interface is chosen reasonably, OP can be used wherever P can be 
used. 

                                                 
2 For example, if P issues a write() call to output 100 bytes, OP in some cases could issue two write() calls 
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Property 2 asserts that knowledge of p is necessary for an observer to understand, without 
deobfuscating OP, how OP’s behavior is driven by OP’s state.  In this context, we use 
the term “state” to designate both data held in variables, and data held in instructions.  
Under the assumption that an observer cannot deobfuscate the program, property 2 
implies two important limitations on attackers: 

1. an attacker cannot observe sensitive information carried in the program, and  

2. an attacker cannot modify selected parts of the program to change its behavior in 
a predictable way. 

If they can be provided with acceptable performance, these properties can be used to 
provide software-based protection in a variety of contexts, e.g., software-based tamper 
resistance, watermarking, enforcement of licensing, safe mobile agent systems.3 

Using property 2, we can characterize the space of possible attacks on an obfuscated 
program: 

Attacks that expose sensitive information.  In this class of attacks, an attacker learns 
sensitive information either by static analysis of OP’s code or state, or by 
dynamic analysis (i.e., running OP with various inputs and then studying OP’s 
behavior, and tracing its state from specific points in its execution).  In either 
case, the attacker must identify a part of OP’s code or state, and also identify how 
to interpret the code or state.  For example, if the sensitive value is an integer, the 
attacker must both find the place (or places) where the integer is stored in OP, and 
be able to convert the integer’s obscure representation into a standard 
representation, such as 32 contiguous bits. 

Attacks that change behavior.  In this class of attacks, an attacker identifies a 
controlling part of OP’s code or state, and modifies it so that OP behaves in a 
new, but predictable way.  For example, a program that compares an input to a 
stored constant could be modified to compare the input to a different stored 
constant.  As with the first class of attacks, the attacker’s objective is to identify 
and interpret a part of the program’s code or state, and the attacker may use either 
static or dynamic analysis. 

The relative ease or difficulty of these classes of attack depends in part on what 
assumptions we make about the resources available to the attacker.  In all cases, we 
assume that the attacker does not have access to the obfuscation policy p.  Other 
assumptions will affect the work factor for the attacker, for example: 

The attacker has complete control of the execution platform.  We assume that the 
attacker has complete control over the execution platform (e.g., the Java Virtual 
Machine, system calls).  This implies that the attacker can trace and profile the 
execution of OP, and can run a debugger on OP. 

                                                                                                                                                 
of 50 bytes each. 
3 See [CTL97a, Hol98, BGI+01,WHK+00, W00, WDH+01] for alternative definitions of program 
obfuscation and related terms such as black-box security. 
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The attacker has source code for P.  Of course, if the objective is to obtain an algorithm 
or stored constant, there is no possible defense if the attacker has the source code.  
However, if the objective is to subvert a running system, the attacker must also 
understand OP.  Since P has the same behavior as OP at a given interface, 
knowledge of P could assist the adversary in analysis of OP.  For example the 
attacker might compare the basic blocks of P and OP to identify which parts of 
OP perform the known functions of P.  Furthermore, knowledge of P’s algorithm 
could allow the attacker to identify parts of OP as being related to identifiable 
functions of P. 

The attacker has seen all of the input data to OP.  Seeing all the input to OP could 
help the attacker understand how OP initializes itself.  Note: if the attacker also 
has the source code of P, the attacker can predict OP’s behavior since the attacker 
can simulate it using P.  We generally assume that the attacker does not have both 
the source code of P and all of the input read by OP.  In the case of mobile agents, 
it will usually be the case that a single attacker (at a node) will not have access to 
all of the input data to OP.  For stand-alone applications, however, the attacker 
can probably obtain all of the input data by tracing the application’s system calls. 

The attacker has the source code of the obfuscation tool.  We assume that the source 
code of the obfuscation tool is open and well known.  Any obscurity that could be 
provided by secret source code to the obfuscation tool would be extremely fragile 
if the tool became widely used. 

The attacker is able to conduct dynamic analysis.  We generally assume that the 
attacker can perform repeated tests on OP using different input data to analyze 
OP’s behavior.  This gives the attacker considerable leverage in discovering 
sensitive information held in OP.  For example, if OP holds a sensitive constant 
(e.g., the maximum price a customer is willing to pay), the attacker can run OP 
repeatedly using different inputs and observe the threshold value where OP 
changes its behavior (e.g., by refusing to purchase).  The application of 
obfuscation to mobile agent systems is a special case where dynamic analysis can 
be prevented if mobile agents only run properly when in communication with 
their peers on benign systems. 

The attacker has limited time to compromise OP.  Given enough time, we believe that 
a determined attacker will always be able to deobfuscate OP. 

While attack classes and attacker assumptions can provide some insight about the 
feasibility of obfuscating transforms, they are too high-level to support conclusions about 
the relative costs and benefits of obfuscating transformations.  As with attacks on existing 
computer systems, attacks on obfuscation are often based on exploiting fairly low-level 
details.  In conventional attacks, low-level details of system interfaces and 
implementations are misused to gain unauthorized access.  In attacking obfuscation, low-
level details of execution formats and instruction sequences are used to gain information 
that can then be used to identify and interpret program states. 

The interplays between attackers and conventional computer defenses are often 
characterized as “arms races” since systems are imperfect and attackers are continually 
seeking to discover vulnerabilities that have been overlooked by the defenders.  Usually, 
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if the defender is willing to expend more effort, the defenses can be improved.  We view 
the interplay between attackers and defenders with respect to obfuscating transforms in 
similar terms.  In the case of obfuscation, however, the role of automated tools is perhaps 
even more central.  Automatic obfuscation tools can generate data structures that severely 
stress manual analysis and require many hours (or days) of analysis to unravel.  The 
attackers must therefore rely on automated tools to attempt to analyze obfuscated 
programs.  The arms race is between the writers of defending (obfuscating) tools and the 
writers of attacking (deobfuscating) tools. 

We investigated available freeware and commercial Java obfuscators and decompilers. 
The obfuscation methods described in our Obfuscation Techniques Report [BDM+01] are 
substantially more complex than most currently available. This comes with a cost: the 
output of most existing obfuscators are smaller than their input, and most produce output 
programs that execute at more or less the same speed as the original. JBET-based 
obfuscation attained substantially more obfuscation by abandoning this constraint. 

2.1.1 Components of the Obfuscation Relationship 
A defender Alice has a program P that she wants to distribute to one or more untrusted 
parties.  She wants these parties to be able to run the program, but she has a set of 
security constraints as well, i.e. actions that she does not want attackers to be able to 
perform given OP.  Obfuscation is the class of techniques wherein Alice applies a 
behavior-preserving transformation to P prior to distribution, in order to enforce her 
constraints. 

This definition is extremely general, and we believe it accurately describes all the 
techniques that could reasonably be considered obfuscation.  Alice's constraints may or 
may not be formal.  For example, if P has a secret input, and the constraint is that the 
recipients of OP must not be able to determine that secret input, then the constraint is 
formal.  If P has a secret algorithm that the recipients must not be able to “understand,” 
then the constraint may depend on an informal definition of understanding.  Our 
definition also allows for the domain of allowable programs P (for a given obfuscation 
technique) to be limited.  For instance, Alice may only be interested in obfuscating 
circuits, or programs including some sort of annotation, or programs without while loops 
(i.e. primitive recursive programs).  The definition also does not specify what other 
knowledge the attackers are given, i.e. whether or not they know some or all of the 
original program P, whether they know what obfuscation technique Alice is using, etc.  

Because of the generality of this definition, it is useful to consider more restrictive 
frameworks for analyzing obfuscation.  For instance Barak et al. only consider the 
situation where Alice's constraint is the confidentiality of certain data determined by the 
function P computes.  This framework has the advantage that the criteria for success can 
be described very precisely in terms of complexity theory, and so it is possible to prove 
theorems about it.   
The attacker can run the program and examine it, with the intent to extract a secret or 
modify the program’s behavior. 

Often we speak of obfuscated data: for instance, a shopping agent might know its 
originator’s credit card number, and use it under certain circumstances, while making it 
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hard for an attacker to extract that number; we say the credit card number is obfuscated.  
In general “obfuscated data” is just another way of saying that an obfuscated program has 
an input that is given to it before it got to whoever is running it now, and the originator 
wants that input to remain confidential (except for whatever can be learned about it given 
black box access to the obfuscated program, of course). 

The secret is what the defender is trying to hide: it may be a data value in the program, or 
what the program will do in given situations. Crypto keys, license status, credit card 
numbers, and bidding limits are examples of the first type. The second type includes 
algorithms used to calculate output, or behaviors of the program: for example, one might 
wish to discover what an obfuscated virus might do when triggered.  

Some use-cases do not seek to protect a secret per se, but to enforce a more general 
constraint.  For instance the copy protection of a game might want to prevent the game 
from being run without the CD it was distributed on being in the computer.  It could try 
to enforce this by checking sub-channel data on the CD.  An attacker could emulate the 
machine the game runs on, so the game might run a series of tests to determine if it is 
running under emulation.  The goal of obfuscation in this case would be to prevent the 
attacker from running the game without the CD, given that the attacker does not have a 
perfect emulator or enough time to write one, not to protect any specific data.  Of course 
this situation is very informal, but it is no less valid for that.  The success of obfuscation 
in such a situation could possibly make a real difference to the game company’s bottom 
line. 

The defender creates the unobfuscated, or original form of the program. This is the 
representation that the program to be obfuscated is in before obfuscation techniques are 
applied.  It should include all information that is needed to run the obfuscator; for 
instance, if annotations are required then they are part of the unobfuscated form of the 
program.  In other words, we subsume any hand-done parts of the obfuscation into the act 
of writing the program.  Note that some obfuscators may have special requirements on 
the unobfuscated from (if it's in Java, the use of reflection may be disallowed, etc). 

The Obfuscated form is the representation of the program that is actually distributed to 
possible attackers. It is produced by running the unobfuscated form through an 
obfuscator. 

The execution environment for a program can be described as an abstract machine. This 
may be a virtual machine environment such as the Java Virtual Machine, or a particular 
combination of hardware and operating system that supports the execution of the 
obfuscated form of a program, or a language interpreter such as Perl.  Typically Alice 
will expect the non-attacking recipients of her program to use a specific execution 
environment (such as the Perl interpreter), or an environment that meets a specific 
specification (such as a Java Virtual Machine), but the attacker is of course free to use 
whatever environment he wants.  He may even choose not to run the program at all, but 
to do some sort of inspection or static analysis on it instead. 

The behavior of a program on a given input is a transcript of its interaction with the 
execution environment when it is run on that input.  For example, if the program is 
represented as a Turing machine, the behavior is the output produced, along with the run 
time.  If it is a Turing machine relative to an oracle, then the behavior also includes all the 
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oracle queries that were made.  If the program is represented as a Java class, the behavior 
is all of the library calls made.  The behavior of the program, then, is just the collection of 
all of its behaviors on specific inputs.  When we say two programs have the same 
behavior, we allow for polynomially bounded change in runtimes.  Note that an attacker 
can query the behavior for any given input, but in general cannot “know” the total 
behavior of the program; in fact, the secret to be protected is often determined by the total 
behavior. 

2.1.2 Deobfuscation 
Informally, deobfuscation is whatever the attacker is trying to do, i.e. if the attacker 
succeeds at deobfuscating the obfuscated form, then obfuscation has failed.  Thus the task 
of deobfuscation is to discover the secret given the obfuscated form, or more generally, to 
violate the security constraints. 

This definition may seem somewhat strange at first: if obfuscation is some sort of 
compilation, or translation process, then the natural inverse of obfuscation should be 
some sort of decompilation that should produce the original source code that was fed into 
the obfuscator.  We will call the act of producing the unobfuscated form given the 
obfuscated one source-recovery.  Using source-recovery as a definition for 
deobfuscation has several problems, however.  First of all, it is never possible to fully 
recover the source code, because things like variable names are irrevocably lost.  Thus in 
order to say anything formally you would have to specify exactly what data about the 
unobfuscated form should be recovered.  It is difficult to make precise statements about 
source-recovery that correspond correctly with our intuitive ideas on the subject.  The 
other problem with source-recovery as a standard for deobfuscation is that it addresses 
attacks against a particular obfuscator in general, not against that obfuscator being used to 
protect a specific type of secret.  In other words source-recovery is too coarse: it cannot 
look at each use case separately, which is what we want to do. 

All this is not to say that source-recovery is not a useful concept, only that we will not 
use it as our standard for attacker success.  Intuitively, source-recovery does totally undo 
obfuscation, in the sense that if you can do source-recovery, then deobfuscation is just as 
easy as if the program were never obfuscated in the first place.  Therefore if you have a 
use-case, and source-recovery does not imply deobfuscation in that use case, then there is 
something else going on other than just pure obfuscation.  Perhaps the attacker’s problem 
was impossible to begin with.  For instance, a virus scanner that can determine if a 
program ever writes to the boot sector is impossible, whether the viruses are obfuscated 
or not. 

2.1.3 Success 
An attacker succeeds in deobfuscating a program by discovering the secret that the 
defender wishes to protect. In the case of a data value hidden in the program, this is 
straightforward to determine. If obfuscation is used to ensure that the attacker cannot find 
where to patch a program in order to change its behavior, as is often done to support 
licensing schemes, then the attacker can succeed without full understanding of the 
program. On the other hand, if obfuscation is used to hide what a program might do, then 
deobfuscation succeeds only if it can produce a complete account of the behavior of the 
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program. For example, an obfuscated virus might contain hidden time triggers or the 
ability to execute arbitrary commands sent from outside, and deobfuscation is only 
successful if it describes all such features. 

Some writers on obfuscation define success at deobfuscation as producing exactly the 
original program. This is an unnecessarily strong requirement: many programs are 
trivially equivalent, say by substituting one equivalent opcode for another, and any 
member of this set of equivalent programs should be accepted. Another approach 
[CW00] defines deobfuscation success as determining which basic blocks in an 
obfuscated program are never reached. 

2.1.4 Work factor 
By analogy with cryptography, we would like to compare different methods of 
obfuscation by estimating the amount of work to deobfuscate an obfuscated program. 
The usual assumptions are that the attacker knows what algorithm was used to obfuscate 
a program (since otherwise one is relying on security through obscurity) and that the only 
unknowns are the parameters to obfuscation, which we have lumped into the policy. 

We speak of a work factor to emphasize that the cost of deobfuscation is a relative 
measure that does not depend on CPU speed or implementation efficiency, but rather on 
the intrinsic properties of the obfuscation algorithm and the deobfuscation process. 

If deobfuscation has a high enough work factor, i.e. can be made costly enough, it can be 
a useful method of information protection. 

For SPMA, we desired to protect obfuscated agents for some “time,” however measured. 
As we shall see in section 6.1.7, the Barak et al. paper [BGI+00] shows that this cannot 
be done in the general case. 

2.2 Use cases 

This section describes cases where systems may wish to make use of obfuscation and 
describes the problem to be solved from the point of view of the system implementer. 

2.2.1 Mobile Agents 
As previously stated, the original goal of the SPMA project was to produce tools for 
protecting mobile agents running on untrusted computers. Our proposal for a secure 
mobile agent system involved several components: obfuscation, running on multiple non-
colluding hosts, and periodic movement among available hosts. Only the use of 
obfuscation is discussed here. 

2.2.1.1 Problem 
A developer wants to distribute a program that will run on an unstructured network of 
mobile agent hosts.  The hosts are untrusted by the developer, but he still wants to ensure 
that the program operates correctly. The program may also have secret data to conceal. 
Interaction with the host system in a way other than as a processing resource and data 
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storage device (for example, accessing public data on the host) is unspecified. Protection 
against well-trained attackers possessing major resources is desired. 

2.2.1.2 Attack 
The attacker wants to either obtain secret data from a part of a mobile agent that is 
running on his host, or to modify the behavior of the mobile agent. 

2.2.1.3 Use of Obfuscation 
Obfuscation can make programs harder to understand, and make special-looking data, 
such as encryption keys or credit card numbers, more ordinary. This is particularly true 
when no user (or “plaintext”) communication is involved. In addition, if the valuable 
duration of the data in the mobile agents is short (max bid for an auction that ends in 2 
days), obfuscation increases the likelihood that its usefulness would expire before the 
attacker could learn it.  

2.2.2 Standalone Software Copy Prevention 

2.2.2.1 Problem 
A developer distributes a software program with the intent of allowing only particular 
uses of the software.  One desirable constraint might be the software should not function 
if installed on additional computers without intervention from the distributor. The 
software cannot require special hardware or “call home” except at installation. A variant 
is a time-limited version that refuses to run after a certain date. 

2.2.2.2 Attack 
The attacker wants to make a new program distribution that can run on any compatible 
computer and function unhindered. We will assume that the attacker cannot simply 
redistribute the installer; e.g. perhaps the installer sends system specific information to a 
network server and it supplies the program's license file. We will also assume that the 
attacker has one functional copy of the program.  

2.2.2.3 Problems With Obfuscation 
If the attacker has a working copy, obfuscation cannot completely prevent him from 
distributing it.  As with the rerun attack described earlier, he could install the software in 
an emulated environment (e.g. Connectix Virtual PC or VMware) and distribute that 
without having to understand or even look at the obfuscated code.   

A more elegant solution would be to trace the system configuration calls the program 
makes, and prepare a front-end to the program that reports the same system configuration 
data (hence making the system-dependent license usable on every machine), no matter 
what computer the program is subsequently executed on. The executable could also be 
modified such that the system calls that get the configuration data are replaced with static 
data. 



SPMA Obfuscation Report   

DARPA contract N66001-00-C-8602 16  

2.2.2.4 Use of Obfuscation 
Although obfuscation cannot absolutely prevent distributing copy protected software, a 
practical goal of copy protection is simply to raise the cost of copying it to the point that 
more people would rather buy it.   

Emulation attacks make it impossible to achieve software-only copy protection in 
general, but emulation is often significantly slower than running a program directly.  This 
means that in order to fool a program into thinking it is running in its original 
environment, one must either make many complex changes to the OS to systematically 
lie to programs it runs (which would be a rather large development project) or accept the 
cost of emulation (which can be significant).   

An approach hackers often use is to try to find the right instruction to modify in a 
program to disable or bypass its protection scheme.  Obfuscation may be used to make 
that task more difficult by concealing conceal one or more pieces of tamper checking 
code as described in Horne et al. [HMST01].  Delaying the defeat of a protection scheme 
in this way may generate enough sales to compensate for the cost of developing the 
obfuscator. 

Smart cards used in e-commerce applications compute a crypto function of their inputs 
and a secret personalization on the card, which can be used to verify that the card was 
present. The software on the card and the card reading software could be obfuscated to 
raise the cost of attacks on the system, although memory constraints on smart cards may 
limit the usage to obfuscation methods that do not drastically increase the size of the 
code. 

2.2.3 Viruses 

2.2.3.1 Problem 
A developer prepares a virus with some spreading mechanism and payload (search for 
financial data, delete data, etc.). He wants to conceal the spreading mechanism and more 
importantly, the payload, from analysis. Viruses will invariably be analyzed at some 
point, so general “analysis resistance” is useful to them. 

2.2.3.2 Attack 
A network security engineer discovers a host misbehaving, and guesses that a malicious 
program was installed. He wants to detect the presence of the virus on other hosts, 
remove the virus, and/or discover what the virus payload will do and when. 

2.2.3.3 Use of Obfuscation 
Obfuscation attempts to remove structural information from a program, making analysis 
of the program more difficult. This is especially true when the information being 
concealed is only valuable for a short time, as is usually the case with viruses. Even poor 
obfuscation will slow the attacker down and allow the virus to spread further before virus 
scanners are updated to deal with it. 
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2.2.4 Algorithm Hiding 

2.2.4.1 Problem 
A developer wants to distribute a program that implements some algorithm. He does not 
want others to discover that algorithm. Commercial software is usually distributed in 
executable form only, so that competitors cannot easily determine how it functions in 
order to make a compatible product. However, good automated reverse engineering tools 
exist that produce more readable results with executables from common compilers. 

The attacker can do two things to obtain the technology.  We could assume that a 
competitor would know a good deal about what it does and probably some of its 
input/output characteristics.  One option is to use slicers and profilers to isolate the 
algorithm, then extract it, and use it in their own program without having to know how it 
works. 

The other option is to learn how it works in order to replicate the technology.  An 
important feature of this use case is that human understanding is the goal..  The task of 
“understanding” an algorithm cannot be defined mathematically and cannot be done by a 
computer. Therefore this use case cannot be fully analyzed mathematically, and lower 
bounds cannot be put on the difficulty of deobfuscation.   

As mentioned above, tools (decompilers in particular) can help a person deobfuscate by 
translating the program into a more readable form.  A partial analysis of this use case can 
be made by analyzing the extent such decompilers can recover data about the source 
code.  Formally, if O is the obfuscator, d is a function on source code, and D is a 
deobfuscator then we want d(p) = d(D(O(p))) for some set of programs p.  One could 
then investigate for which functions d a corresponding deobfuscator D exists.  The 
“closer” d is to being the identity, the worse the obfuscator O is.  One might hope to 
prove that for a particular obfuscator such functions d are limited to a class that would 
not be very useful to a deobfuscator, however this would not constitute a proof that it is 
hard to understand a secret algorithm given the obfuscated code. 

2.2.4.2 Use of Obfuscation 
A running joke is that obfuscation is the natural state of programs because analyzing a 
program without prior knowledge of its internals is so difficult. Potentially, obfuscation 
could make program analysis even more difficult.   

2.2.4.3 Problems With Obfuscation 
Because a human will perform this analysis, it is impossible to guarantee any kind of time 
or complexity bound on the analysis required for a particular obfuscation technique. 
Obfuscation for algorithm hiding does not require the attacker to solve a new kind of 
problem, as other uses of obfuscation might. The problem the attacker faced if 
obfuscation was not used was program understanding. The problem the attacker faces 
when obfuscation is used is also program understanding.  

However, if the attacker’s goal is to simply use the algorithm and not understand how it 
works, obfuscation does present the attacker with a new problem.  Good programming 
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practices result in highly modular, portable, structured code, which makes it fairly trivial 
to extract and reuse.  Among other things, obfuscators can create code and data 
dependencies to blur the lines between modules.  The attacker is now faced with the 
genuine problem of extracting the algorithm where before it was trivial. 

2.2.5 Summary 
These use cases were selected because we know them to be common uses of obfuscation, 
not because obfuscation is well suited to those tasks. When determining whether to use 
obfuscation in a specific project, it is important to consider several factors specific to the 
project, including:  

• the valuable lifetime of the data or algorithm to be obscured,  

• an attacker’s likely goal, 

• the type of analysis the attacker is likely to use, and  

• whether obfuscation can be combined with other techniques to increase the total 
system security.   

Mobile agents (assuming time-assured obfuscation is available) are a good example of 
obfuscation used as part of a security system. 

3 Our Experiments 
Before redirecting SPMA to study obfuscation, we planned to build a useful self-
protecting mobile agent tool. This tool would have consisted of an agent-splitting 
component and an obfuscation component.  During the development of the obfuscation 
tool, we became concerned that the obfuscation techniques would provide little 
protection, and developed a deobfuscator to test that hypothesis. This section describes 
the obfuscation and deobfuscation software we built. 

3.1 Obfuscator 

We implemented an obfuscation tool that worked on Java binaries. To discuss the 
obfuscation tool, we will divide its processing into several categories: code and data 
storage, control flow, and interfacing with the system environment.   Because of the 
restrictions of the Java environment, we have focused on breaking down semantically 
rich Java structures such as method invocation, virtual method dispatch, exception 
handling, data representation, garbage collection, and object structures.  A program 
obfuscated using our JBET-based obfuscator looks entirely different from the original 
when viewed in terms of these structures because the high-level, self-describing 
structures found in the Java class files are synthesized using lower-level primitives.  The 
lower-level structures then use flattened control flow (similar to, but independently of, 
that proposed by Wang’s group [WHK+00]), and a variety of obscure data representation 
approaches.  We use lightweight (and weak) techniques (e.g., offsets, value rotation, x*n 
mod 1, register splitting, table replacement, XOR with various constants) for obscuring 
heavily used but low-level temporary variables such as loop indices that must be quickly 
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manipulated.  We could use stronger, more computationally intensive techniques (e.g., 
DES, parse tree representations, Chinese Remainder Theorem, permutations, 
parameterization) for obscuring longer-lived, semantically more important data structures 
of a program. Whenever possible, libraries were obfuscated along with the input 
program, in the same way had the libraries been submitted along with the input program. 
Most of the development time went into reimplementation of language features (but in an 
obfuscated way): method call stacks, virtual tables, object memory layouts, etc. It was 
only after the obfuscation tool was implemented that we realized it was easy to reverse.  
What follows is a summary of the feature set we implemented.   

3.1.1 Java Binary Manipulation 
The JBET core performs low-level Java binary manipulations. For complex code 
transformations such as obfuscation, a higher-level approach is desirable. 

Because manipulating stack-based instructions directly is complicated, we explored two 
internal representations of Java binary code to use for implementing the obfuscator. The 
Java verifier allows stack slots to be treated as variables, because the stack configuration 
must always be the same at any given instruction no matter which control flow path led to 
that point. Our first representation was three-register code, which was dropped because it 
required manipulation of register indices, and not all Java instructions have sensible 
three-register equivalents.  

The second representation was a directed acyclic graph (DAG), where the vertices 
represent Java instructions in an almost one-to-one fashion. The only instructions not 
translated are those that only manipulate stack elements (for example, dup and pop). 
Edges in the DAG represent data flow; each edge joins a producer node and a user node 
(e.g. an integer add node has two edges pointing to the integers to be added). Nodes may 
have shared edges, but cycles are not allowed as that would mean that a node needed to 
use its own value in its computation. Some nodes (such as constants and global variable 
references) have no producers. The DAG representation of code has many advantages, 
particularly making it easy to substitute parts of an expression. 

3.1.2 Code Storage 
Our obfuscator avoids storing obfuscated methods in the normal Java way, as an isolated 
code block with a method name and descriptor, to avoid giving this information to a 
potential attacker. Instead, all the code comprising the obfuscated methods is collected 
together, randomly ordered at the basic block level (our control flow implementation was 
constructed to support this arbitrary ordering), and placed into one Java method (we call 
this an “output method”). Because Java limits methods to 65536 bytes of instructions or 
less, even trivial programs (once obfuscated) often exceed this limit, making several 
output methods necessary. All of the “fixed code” such as the global exception handler is 
stored this way also. Each output method then has extra code to support jumping to basic 
blocks located in other output methods, but that is transparent to all other parts of the 
output program. Then, the final program has multiple methods, but they do not mean 
anything as the blocks were randomly ordered before being divideded into output 
methods. The entry point of the program (usually main, but different for applets) is coded 
as an “internal stub”, described in section 3.1.9. 
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3.1.3 Data Storage and Object System 
Our implementation uses “semi-raw” memory blocks to store fields and array elements. 
Since Java is a type-safe language, using byte arrays would require us to perform all 
operations using only those allowed on individual bytes. As that would incur so much of 
a performance loss that testing would be inconvenient, we made a compromise between 
byte arrays and structured storage: arrays of primitive types. We believe that using arrays 
of primitive types gives only marginal information to the attacker, since they can be cast 
from one to another.  That is, the primitive types of the original data do not have to be the 
primitive types of the obfuscated data; an int can be mapped to two floats for 
example.   

Each original object is replaced with generic storage using this Java declaration: 
class Memory { 
  int[]    I; 
  Object[] L; 
  long[]   J; 
  float[]  F; 
  double[] D; 
  Memory[] N; 
} 
 

Each class then stores its fields (including the virtual tables) in an instance of Memory. 
Multiple virtual tables would be needed if the Java class had interfaces. The last array is 
included for convenience and to reduce cast operations in generated code (all application 
objects are instances of Memory, and so can be accessed without casting). Each class 
with virtual functions stores one or more virtual tables, and an integer to identify the 
runtime type. We implemented a general multiple inheritance mechanism and so (unlike 
Java), the interfaces of a class were treated as additional superclasses by our simulated 
class/object system. Each constructor was responsible for storing the appropriate virtual 
tables (this turned out to be a critical weakness, as it allowed parts of constructors to be 
recognizable as such) into the Memory instances that would represent the new object.  

Our architecture supports multiple obfuscated versions of a single user-defined class, but 
we did not implement that. Other data structures, such as those for implementing method 
call stacks, use instances of Memory also, possibly making analysis more difficult. 

For a user-defined type not needing to be passed to a system library (such as a 
“Document” container or RSA private key), it has no Java class representation, only the 
“emulated” class as instances of Memory as described. User-defined types that need to be 
passable to library methods have an “internal stub”, detailed later, but are otherwise the 
same (i.e. no direct Java class file representation). This means that an attacker would first 
have to discover the method invocation protocol before calling obfuscated methods. 

3.1.4 Control Flow 
As described in our Obfuscation Techniques Report [BDM+01], we removed all control 
flow instructions, replacing them with data-driven jumps. In Java bytecode, this means a 
tableswitch instruction with a large array of targets. Each target block is based on a 
basic block from the original program. The switch statements allowed us to use “basic 
block addressing”, where each basic block in the obfuscated program could be jumped to 
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in a generic way. This mechanism was used for exception handling and virtual methods 
as well: the virtual tables contained block addresses for the entry points of the methods, 
and the exception records (discussed later) contained a block address for the exception 
handler. 

3.1.5 Method Calls 
The method call stack we implemented uses the Memory class for storage allocation. The 
Java local variables are stored directly in the call stack object. At each applicable method 
call, a new call stack “object” is created and added to a linked list of outer call stacks 
(Not a Java “LinkedList” object, but a link field (e.g. Memory::N[2]) in the simulated call 
stack object). Then, the method arguments and return address are stored in the new local 
variable array and control passes to the first block of the method. For a virtual method 
call, the caller examines the virtual tables to determine the block address to jump to; 
otherwise the jump address is hardcoded. When the method returns, it reads the jump 
address from the call stack and transfers control there. If there was a return value, it is 
stored in the caller's local variable array. It was necessary to store the local variables in 
arrays instead of Java local variables (which would have been much faster) because of the 
need to implement method calls without using Java’s method call mechanism. It also 
allowed the multiple methods (mentioned in the Code Storage section) to be more 
transparent, as they would access the local variables from an array passed in as an 
argument. 

3.1.6 Runtime Type Information 
 A limited amount of runtime type information was always placed in the output program, 
because many Java programs use the instanceof and checkcast instructions, or 
exception handling (the search for the non-local handler in Java requires instanceof 
checks). Each class was assigned an integer, the product of its private identifier and the 
identifiers for all superclasses and interfaces. The Java checkcast and instanceof operators 
were replaced with code that emulated the behavior of those, using the virtual tables and 
class identifiers stored in the Memory instances representing the objects. No attempt was 
made to use inter-method dataflow analysis to reduce the need for checkcast and 
instanceof operations.  

3.1.7 Exception Handling 
Our obfuscator supports Java exception handling by replacing the throw and catch 
mechanism with our method call mechanism. When an exception is thrown to a handler 
in the same method, it is coded as an ordinary jump – removing most knowledge that an 
exception was involved from the program. Otherwise, the call stack is augmented with 
exception handler records (implemented as instances of Memory) analogous to those 
stored in the Java class files (and maintained by the JVM for normal Java program 
execution). The exception handler list is updated at the start of each basic block inside a 
try range that might need non-local exception handling. Code that is not in a try range is 
still subject to exception handlers from outer methods, exactly as in Java. When a non-
local exception is thrown, control is transferred to the global exception handler (stored as 
part of the obfuscated program). The global handler searches the exception records of the 
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current call stack until a type matches. Then, a jump is made (using the switch construct) 
to the exception handler block indicated by the exception record. The thrown exception 
(an instance of Memory, same as any other internal object) is stored in the handler’s local 
variable array. We realize that the exception handler search is not good for obfuscation 
purposes; however, non-local exception handling requires type information at runtime. 
Java programs can be designed so they do not need non-local exception handling, so this 
is not a fatal problem, however it does require careful design.  

3.1.8 External Stubs 
 A Java application will often store references to library objects, such as 
FileInputStream, in its own classes. When an object is returned from a library, a 
stub is created (an instance of class Memory with proper virtual table and class identifier 
setup) that redirects calls (and untransforms arguments) to the original object. This 
provides a window into the implementation of obfuscated data storage, but that is 
unavoidable, as the application will have to use library objects. Our use of a type-system 
conversion for library objects allows them to be accessed as their interface type is 
accessed within the obfuscated program, but the true type of the library object is not 
accessible. We believe that this is not a concern as many library implementation types are 
private, or restricted in some other way, and do not add public functions beyond those 
declared in the interface type. Note that an external stub is entirely implemented in the 
simulated class system produced by the obfuscator; it has no class file. It is implemented 
with instances of Memory in the same way that user-allocated objects of the same type 
would be. The obfuscation tool automatically determined the classes accessed by the 
application, and which of those could be “imported” and considered part of the input 
program to be obfuscated. Those imported classes may need stubs for interaction with the 
rest of the library. Non-polymorphic classes such as Strings usually do not need stubs; a 
new object is constructed and that one is passed to the library instead. 

For example, java.util.Vector and java.lang.String were “imported” and considered part 
of the application for obfuscation purposes. This means that the application contained 
obfuscated code for the functions in String, as well as a “deobfuscation” interface so 
Strings could be passed to standard library methods. 

3.1.9 Internal stubs 
Another problem we encountered was passing application objects to library methods. For 
example, the library method PrintStream.println(Object) requires an 
Object reference that it will call Object.toString() on. When a library call is 
made, a stub is created (in the Java object hierarchy) of the type of the argument, which 
will make calls using whatever internal protocol is used by that object. The stub itself is a 
real Java class, with a name, superclass, interfaces, and methods. The methods of the stub 
class contain a small amount of code responsible for setting up the simulated call stacks 
(section 3.1.5) and jumping to the appropriate basic block. Note that this provides a 
window into the obfuscated data storage, but that is unavoidable, because the application 
needs to pass data (including object references) to the library in order to have 
interactivity.  



SPMA Obfuscation Report   

DARPA contract N66001-00-C-8602 23  

The types of stubs that will be needed for this purpose are determined at compile time. As 
with external stubs, the library can only access methods declared in the declared 
argument type and not any only present in the runtime type, because the library is 
actually accessing instances of the stub class, which only have what the interface type 
declares. This is only a limitation if the library uses reflection to call methods or examine 
fields outside the interface of the argument type.  
For example, the application passes an object of type UserDefinedInputStream to a 
library method declared void f (InputStream o). Then, the obfuscation tool will generate 
an internal stub with the InputStream interface that will call obfuscated methods in 
UserDefinedInputStream. The library only sees the stub, the same one that will be used 
for other user-defined InputStream subclasses, so the obfuscated type remains concealed. 
Another common internal stub is that for “main”. 

3.1.10 Java Obfuscation Demonstrations 
At the OASIS PI meeting at Hilton Head and the summer PI meeting in Santa Rosa in 
2002, we demonstrated our JBET obfuscation tool. We showed obfuscation of both a 
simple program (that just counts to 10 and prints the results) and a more complex, 
computationally intensive program (DES). Our tool translated compiled Java bytecodes 
into obfuscated bytecodes. The demonstration showed the costs of obfuscation (an 
increase in size of about tenfold, and a runtime slowdown that depended on the 
application, but ranged from fourfold to twentyfold). Additionally, we showed the JVM 
bytecodes generated by our tool. 

3.2 Deobfuscator 

We developed a “deobfuscator” (actually more of an analysis assistant) for our 
obfuscation tool. It worked by searching for patterns in the input program, and running 
selected parts of the program. It was largely successful, in  that it was able to determine 
method entry points, the structure of the class hierarchy, which methods were 
constructors, etc. The DAG representation of Java bytecode developed for the obfuscator 
was extremely useful for deobfuscation as well, representing particular variable writes as 
operation trees. 

Generating the DAG representation could be the first stage of decompiler 
implementation, where accurate and readable source code could be printed for each basic 
block. In Java, because of the type system and verifier, there is no way to hide the 
boundaries of basic blocks with arbitrary jumps. 

3.2.1 Dynamic Analysis 
The deobfuscator runs the <clinit> (static initialization, run when a Java class is 
loaded) of the program to retrieve the virtual tables and jump tables, so the basic blocks 
of the obfuscated program can be viewed as a uniform set instead of basic blocks in 
methods. If the deobfuscator were more complete, it would also run constructors to 
determine which class the constructor was for (by the virtual table it stored). 
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3.2.2 Pattern Matching 
The control flow leaving each block was determined by pattern matching on the DAG 
representation of the basic block. Since our obfuscator produces basic blocks that use 
data-driven jumps, there is a calculation in each obfuscated basic block that returns the 
block to jump to. Our obfuscator output only a fixed number of formats for this 
calculation, so the deobfuscator can match against those formats. 

After simplifying the control flow leaving each basic block, the deobfuscator used the 
virtual tables (read from running the initializer) to determine which basic blocks were 
method entry points. Since no Java method (in the original program) can jump to code in 
other methods, this allowed complete determination of method composition. The virtual 
tables also associated methods with classes. Certain facts about the class hierarchy could 
also be determined from the virtual tables, such as superclass and interfaces. Our 
obfuscator preserved all class hierarchy information from the original program, in the 
form of the factorization of the class identifiers (section 3.1.3). 

Instances of primitive classes should be easy to determine from the virtual tables, or from 
comparing multiple obfuscated programs, as they will have the same methods. 

3.2.3 How deobfuscation could have been made more difficult 
A better obfuscator could hinder many of the techniques used by our simple 
deobfuscator. As the basic block to method mapping would be one of the most useful 
things to the analyst, searching for common basic blocks and placing only one instance of 
that block in the output program would complicate the control flow calculations required 
(because that block would have twice as many successors as it once had), adding to the 
list needed by the pattern matcher. 

The parts of the program that dynamic analysis is useful for (clinit and constructors) 
could require additional state, so that “run one block only” dynamic analysis won't work 
properly. 

Our implementation of the instanceof operator used integer factorization, and never 
discarded information. We could have only used meaningful class identifiers if that 
information was necessary. A great deal of information about an object-oriented program 
is contained in the class hierarchy, because it not only reflects program behavior, but 
design and specification as well. 

The various control flow tables could be initialized on demand, instead of all in one place 
run at program startup. This could make extracting virtual tables with dynamic analysis 
harder as the table itself would not be created (or stored in a common location), until an 
instance of its class was allocated. However, constructors would probably be the easiest 
type of method to search for completely unaided. 

Derived classes could have private casting methods, so that they may only be cast into 
those base classes that are actually used in the original program. This would prevent the 
attacker from calling java.lang.Object.toString() on everything in the 
system once the obfuscation for java.lang.Object was discovered (unless the 
attacker also discovered the cast-to-Object protocol for that class) 
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Each of these counter-strategies to deobfuscation has, in turn, a counter-counter strategy.  

3.3 Summary 

Obfuscators are hard to implement. The amount of work required to get usable 
obfuscation is much greater than checking or fixing many classes of simple security flaws 
(buffer overflows, not checking input, string quoting, etc). In addition, the security gained 
is likely to be nonexistent to marginal. There are solutions to all of the use cases we 
presented that do not involve obfuscation (such as running the program that would have 
been obfuscated on a network server).   Our obfuscation tool took over 2000 hours to 
develop, for no to very marginal security.   Implementation of obfuscators will require 
source or binary editing, and compiler-like functionality, which are not trivial to 
implement either. 

4 Difficulties in Implementing Obfuscation 
Regardless of whether obfuscation can effectively provide any security, people will use it 
anyway. This section discusses problems with using obfuscation on ordinary programs. A 
recurring theme is “build for obfuscation”: programs that are written to be obfuscated 
from the start will get better results from obfuscation than existing programs. In this 
section “defender” refers to the developer (or distributor) of an obfuscated program and 
“attacker” refers to the user of such an obfuscated program who wants to change its 
behavior or extract data. 

4.1 Programming Languages 

The programming language the obfuscation tool works on essentially determines the 
obfuscation techniques that can be used. Several attributes of a language are relevant to 
obfuscation: the kind of type system, the kind of system environment presented, and the 
use of convenient intermediate forms (such as Java bytecode).  

4.1.1 Type Systems: Abstractions and Patterns 
Abstractions in a programming language cause patterns to appear in the binaries (A 
pattern merely being a portion of the binary that satisfies some predicate). As discussed 
in section 3, our deobfuscator worked with the patterns created by our obfuscator. The 
difference between abstractions in the documentation for the language (or libraries) and 
abstractions in the programming language is very important for those who intend to 
implement or use obfuscation tools. In order for an obfuscation tool to disguise an 
abstraction, it must be able to detect it in the input program. Control flow and low-level 
obfuscations may change the appearance of a pattern but not remove it entirely. For 
example, low level data obfuscations (those that operate at the assembly level) change the 
representation of virtual tables to use 4 integers for each entry, but there is still an 
abstract array in the obfuscated program. Static analysis defeating obfuscations work 
regardless of abstractions, but don’t remove them either. Data-structure obfuscations 
(those that operate on structures created by the compiler) may be able to remove or 
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disguise evidence of an abstraction from the program if it was known to the developers of 
the obfuscation tool. For example, our obfuscator was able to disguise the abstractions of 
classes and methods (as described in section 3). Had the control flow transform be 
performed without integration with the type system obfuscation, the classes would be 
clearly visible in the obfuscated program. 

Consider bit flags.  A C source program declares them as int, but they will never be 
added or divided, only manipulated with bitwise logical operators.  Knowing that, an 
obfuscator could identify which integers are sets of bit flags. Then it could represent flag 
sets in another way that makes them appear to be ordinary integers instead (e.g. by using 
prime factors to represent each flag). 
Note that we are using the term “type system” more generally than is common; it 
includes low-level language features as well. For example: int is considered a class, 
with the arithmetic and logical operators as non-virtual methods; Java's 
invokevirtual operation could be considered a method of java.lang.Object; 
the throw operation (in Java) could be considered a method of Throwable. We are 
not normally discussing the programmer's use of the type system, but rather the effects of 
typed data on execution environments. It is important to consider those low-level 
operations as they carry abstractions into the output program also.   

The type system of the language determines what kind (and how much) of type 
information is available to the obfuscation tool. (We will assume that the obfuscation tool 
attempts to work around the language's type system constraints, perhaps by representing 
all polymorphic user types with simple arrays as our obfuscator did, so the deobfuscator 
does not get this benefit.) In a strongly typed language, the obfuscator has enough 
information to obfuscate different types of values in different ways, without needing 
general conversion routines. 

The worst case for hidden abstractions is a weakly typed language: the obfuscator only 
knows about the “fundamental” types of the language (like atoms and lists), and not 
anything higher level at all (without guessing).  

The programmer, and any other reader of the source code, probably does know the high-
level use of each variable, but that information is not explicit in the program. If the same 
use patterns are preserved (which they almost certainly will be), then an analyst will see 
the purpose of each variable. Example: Cloakware's white box crypto [CEJ+02a, b] 
claims to protect the abstraction of a fixed-key block cipher by integrating the key into 
the crypto implementation. Without special obfuscation tool support for this, the block 
cipher (with key) abstraction will be carried into the output program. Programming 
languages that come with many abstractions are good for obfuscation, because there 
would be less need for the application developer to implement more “dangerous” 
(difficult to obfuscate automatically) abstractions. 

4.1.1.1 Example: Obfuscated Rationals 
Certain fundamental structures seem completely impossible to obfuscate (given black-
box access and a few value pairs) Consider the rational numbers. With black box access, 
and one obfuscated representation of a nonzero value (e.g. the obfuscated representation 
of 2 “a8654h”), it is possible to obtain all desired values in the set by repeated calls to the 
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black box. For example, first ask the black box to divide a8654h/a8654h, and then ask the 
black box to add the value received to itself, obtaining the obfuscated representation for 
2.  Given any unknown obfuscated rational, it is possible to derive all integers, and by 
extension all rationals. 

So a search for what the obfuscated value of some x is, or a search for the unobfuscated 
value of some obfuscated representation, will take unbounded but finite time. With the 
obfuscated rationals, the attacker need not even be told which operator is which. Consider 
an attacker with two different obfuscated values, and access to add, subtract, multiply, 
and divide. Assume that divide by zero is detectable. The attacker can “test” the unknown 
values with the unknown operators as follows (Call the two values A and B, and each 
unknown operator f): 

1. Determine if either value is zero by testing each operator f(A,A). If f(A,A)=A 
for at least three operators (add, subtract, and multiply), then A=0. 

2. If no zero was found in step 1, find a zero (and the subtraction operator) by 
applying f(A,A)=C with each function. Then repeat step 1 with C instead of 
A. 

3. If not discovered in step 1, find the divide operator using the known zero. 

4. Find 1 by dividing a nonzero value into itself. 

5. Find multiply by finding f such that f(1,1)=1 

6. Find add by finding f such that f(1,1)-1 = 1 

Typical obfuscated programs will contain several fundamental structures of this type 
(such as integers, floating point numbers, etc.) that each provide a “window” into the rest 
of the obfuscated program. 

4.1.2 The Problem of Merging Type Systems  
The problem of merging type systems has to be addressed to design any obfuscation tool 
that masks complex data storage usage. An unobfuscated program has one type system, 
that of the programming language. The obfuscated version has at least two type systems: 
the obfuscated type system constructed by the obfuscator, and an unobfuscated type 
system that has to be used to interface with unobfuscated code. The former is necessary 
otherwise no data obfuscation is being done.  The latter is necessary because all programs 
need to interact at least with the system environment if only to do I/O.  One might argue 
that the I/O does not need to be in an unobfuscated form, however, based on the 
constraint that the obfuscated program function the same as the unobfuscated version, it 
eventually does. 

Because it is necessary to interact with at least one unobfuscated component, the program 
needs to convert some data between its obfuscated and unobfuscated forms.  
Unobfuscated data provide a handle through which an observer can derive other 
information.  Take for example the simple case of printing a single result to stdout.  An 
attacker would first be able to observe where the result came from.  A data-flow analysis 
of that location would reveal data dependencies (albeit obfuscated dependencies) and 
operations performed on it.  A control-flow analysis would reveal the decisions that 
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guided the calculation.  Whether or not that gives the attacker any useful information 
depends on his goal and the program, however, it should be obvious now that 
unobfuscated interfaces leak more information than simply what is passed through them.  
As a general rule, the fewer unobfuscated interfaces necessary to run, the fewer handles 
into the program an attacker will have. 

The problem is compounded in polymorphic OO languages because at compile time, the 
type of an object at runtime can be vague, necessitating general conversion routines in the 
program for every type that could be the type passed into and out of an unobfuscated 
interface.  Because of Java bytecode’s high-level characteristics, it has additional 
restrictions, which we explain in section 4.1.5. 

4.1.3 System Environment 
The system environment presented by a programming language and its associated 
libraries are important limiting factors for the quality of obfuscation. Libraries that are 
linked in (either at compilation or runtime) give useful information to the attacker, the 
same as giving the attacker part of the source code to the program. Unless a custom 
obfuscation tool is used, the attacker can obtain the libraries and the obfuscation tool, to 
see what kind of output that tool produces for those libraries, and compare with the 
obfuscated program.  

One might object given a keyed obfuscator.  Presumably the attacker does not have the 
key used to obfuscate the program.  It turns out that the amount of variation among 
different obfuscated programs produced by the same tool from the same input program is 
limited because the automated tool is incapable of “understanding” the program and is 
merely emulating it. (This is discussed further in section 5.) Prof. Andrew Appel’s result 
described in section 6.1.10 also shows that the amount of variation in multiple 
obfuscations by the same tool is limited. 

Developers wanting good obfuscation should forego the convenience of using existing 
libraries because of the initial analysis data they give to the attacker.  
In terms of the handles described in 6.1.2, it is easier to reduce the number of handles in 
some environments more than in others.  If a program can be completely statically linked, 
the only unobfuscated interfaces are the system calls.  In Java, the “system calls” are 
interleaved with support classes in one giant standard class library. Section 4.1.2 
discusses why these integrated standard libraries cannot be split into system calls and 
support functions, which would be desirable. Being able to disentangle system and 
support calls allows the support calls to be imported into the input program for 
obfuscation purposes, eliminating the need to treat it as an unobfuscated interface. 

4.1.4 Language Feature Concerns  
We have discussed how general features of a program and its environment affect high-
level obfuscations, now we discuss specific language features.  It turns out that many 
languages with characteristics that are good for data obfuscation also contain features that 
are bad for data obfuscation.  Ideally, the writers of an obfuscation tool would provide a 
summary of the benefits and penalties of using certain language features.  This section 
lists a few problematic features we observed in Java, which we believe are relevant in 
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principle to other languages as well. Note that implementing particular features manually 
is just as bad for obfuscation purposes as using those supplied with the languages (e.g. 
adding reflection to C++). It may be worse because obfuscation tools designed for that 
language may have implementations or warnings for some difficult to obfuscate features, 
but a feature added by the user will not be noticed (unless the user also augments or 
writes the obfuscation tool). 
Our experience in implementing obfuscators is limited to the Java language (and those 
features), but we have analyzed some other language features for this report. 

4.1.4.1 Reflection 
Reflection capabilities present a problem for obfuscation in several ways. Usually, the 
application will contain class or method names as strings. Some applications may access 
fields generically (i.e. through the Class.getField() method), requiring the 
reflection interface be able to access any data structure unobfuscated in the application, 
since it is not known in advance which runtime types may be used this way.  

In an obfuscated program, the reflection mechanism will have to provide a uniform 
interface to all the differently-obfuscated data structures, essentially making it a 
“deobfuscation interface” within the application. If the attacker discovers the interface to 
ordinary reflection features, he can probably deobfuscate the program. If an application 
only makes limited use of reflection features, the obfuscated program’s implementation 
of reflection only has to support a subset of the original language's features on a subset of 
data structures. However, there is no way to determine that an application using reflection 
generically only accesses a subset of classes (or methods, or fields), without requiring 
extra input from the user.  

We believe the best way to support reflection in an obfuscator is to require input from the 
programmer, and not include any functionality unless specifically requested.  Of course, 
if he requests a complete implementation then a complete interface will have to be 
provided, but many applications do not need that, and he was made aware of the 
consequences. 

Some languages (such as Perl) have even more capable reflection features, allowing 
global variables to be searched through or accessed by name. If the program relies on that 
method of accessing variables, the obfuscator cannot remove the names. 

4.1.4.2 Exception Handling 
Non-local exception handling requires some runtime type information in order to 
determine which exception handler is most applicable. Even if the obfuscator implements 
exception handling independently of the language's implementation, it still must use 
'instanceof' checks and go through the exception stack. If the application has a 
complicated hierarchy of classes used as exceptions (like the Java standard library), their 
virtual methods may be exposed through the exception handler implementation  
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4.1.4.3 Excessive use of Polymorphism 
Polymorphic types, in general, are hard to obfuscate with the techniques we have 
discussed. However, using them is preferable to other means of achieving the same 
programming idiom, such as function pointers or switch statements, because of the 
information given to the obfuscator in the form of class declarations. Since polymorphic 
base classes are abstractions, the obfuscator will create patterns in the output program.   

Deep class hierarchies (with base classes having many derived classes) are a problem for 
obfuscation, because a common interface to a lot of application data is exposed through 
the base class (or classes) of that hierarchy. In Java, the universal class java/lang/Object 
has a toString() virtual function, which is often used to print fairly verbose diagnostic 
information about the object. If an attacker can discover the cast-to-Object interface for 
several obfuscated classes (which will almost certainly exist), and the interface for calling 
Object::toString(), he would have a large window into the operation of the obfuscated 
program. 

4.1.4.4 Arbitrary Casting 
Some languages (notably C and C++) allow arbitrary type casts. Because arbitrary 
casting violates the type system, the obfuscated program will need to contain special case 
conversion routines used in case of an arbitrary cast, or prohibit them. For example, a C 
program to be obfuscated contains the following segment: 
{ 

 float x; 

 int *pi = (int *) &x; 

 *pi = 3; 

 printf (“%f\n”, x); 
} 

When this program is obfuscated with per-variable obfuscation techniques (such as those 
described in the Obfuscation Techniques Evaluation Report), the obfuscated version of 
the float variable x will have to support an additional operation (that normal float 
variables do not have): bitwise assignment from int. The per-variable obfuscation 
techniques are often unable to support all the normal operators while remaining obscure. 

4.1.4.5 Templates 
Some languages (e.g. C++ and Ada) support templates which benefit obfuscation because 
common idioms (e.g. container classes) can be specialized for certain types by the 
obfuscator, removing the need to use runtime type information to examine objects in a 
container as in Java. 

4.1.4.6 Range Types 
Range types (found in Ada) allow a programmer to specify that a variable may assume a 
range of integer values. The runtime environment checks those values for correctness 
when they are used. This facility is (if used properly) of great benefit to the obfuscator, 
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because many more representations of integers become useable if the range of values is 
limited. For example, several integers from 0-16 could be stored in one processor 
register. 

4.1.4.7 Perl and other modern scripting languages 
Perl has a combination of useful features which we believe are especially bad for 
obfuscation: weak type system, encouraged mixing code and data, and building and 
executing code at runtime. Although this section is specifically about Perl, it is not the 
only language with this kind of feature set; many modern scripting languages are similar.  

Perl has a single type, 'scalar', that stores strings, numbers, and references. The string and 
number are indistinguishable; a program that stores a number into a scalar variable can 
access it later as a string or a number. The obfuscator would have to support this. As 
scalar variables are common, the attacker would discover the “get string value” protocol 
very quickly and be able to use this on everything (“get string value” also reports the type 
of reference, if any).  In Java, it would be equivalent to discovering how to call 
Object::toString()for every class and primitive value type. 

In Perl, objects are often represented using hashes, but this is usually unnecessary 
because only fixed strings are used as indices. But the language provides no 'struct' data 
structure, so hashes are used instead. A Perl obfuscator would have no choice but to 
represent all hashes the same way, even those that will only ever contain the same 
number of fixed-string entries. Even if only fixed strings are used, database modules and 
persistence mechanisms in Perl iterate over the contents of the hash tables, so they would 
require the fixed strings to be present anyway. 

For example, if the obfuscator remapped a fixed-string hash to use arbitrary integers 
instead, and a persistence mechanism was used on those hashes (ex: if they were saved to 
disk), corrupted data would result as the fixed strings were actually needed when the 
saved hashes were reloaded by another program. Otherwise, the fixed strings remain in 
the program for the attacker to find. 

Perl variables can be accessed by name, and the entire set of global variables can be 
searched through. In addition, Perl allows any ordinary values (strings, numbers, lists, file 
handles, or hashes) to become polymorphic objects at any time. These last two features 
practically prohibit using the 'information hiding' obfuscation techniques because since 
the program can use any number of data access methods on all variables, the obfuscator 
will have to support those general methods for all variables. This is even worse than the 
problems with reflection because there is no static type system to show that reflection 
methods are only used on some types (however a good type-resolution system might be 
able to help).   

4.2 The Portability of Language Features 

We already know that reflection is hard to support in an obfuscator, but what if the user 
builds reflection into a language that doesn't support it directly? Then the obfuscator 
would not necessarily be aware of it, and the complete interface would be present in the 
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obfuscated program. For example, consider a C++ program has a common base class 
with a reflection interface: 
 class Object { 

   public: 
   virtual ClassInfo *getClassInfo() const; 
 } 

 

The obfuscator would not be able to remove this function, because it has no way of 
knowing which runtime types it will be called for at runtime. So it will be common in 
every Object in the output program also. Then to access any data, the attacker only 
needs to decode the method call protocol for getClassInfo, and ClassInfo's 
methods in order to access any data. The obfuscator will also not know about the 
universal class Object, so that abstraction will be carried into the output program. 
While the obfuscator could use alternate representations for derived classes when being 
used as derived classes, it would have to create a stub that uses the same protocols as 
Object when cast into an Object. These stubs may be apparent in the output program 
since they contain the same kind of virtual table as Object instances. 

The white-box crypto proposed by Cloakware [CEJ+02a, CEJ+02b] is a solution to this 
type of problem also: encryption algorithms are fairly obvious, that is a technique 
“writing specifically for obfuscation” that can be used. 

4.3 Networked Programs 

An attacker with complete control over the program's environment, as is the case when 
the program runs entirely on the attacker's computer, will eventually gain whatever 
behavior changes or secret data he wants. The only counter to this is to split the program 
so that it does not run entirely on the attacker's computer. This is the client/server model, 
where the attacker only runs the user interface; any real functionality is done on a remote 
server, away from the attacker. The emphasis here is on “real functionality”; adding 
functions that simply contact a networked service to check license keys or anything 
similar provides little protection. Note that since both “efficient operation” and “real 
functionality” is involved, the choice of which sections of the program can run on the 
attacker's machine cannot be accurately determined automatically; it must be designed 
into the program. A program that attempted to determine which functions were 
computational might include user interface routines, making the client-server split 
inefficient.  

4.4 Summary 

At this point it should be clear that the best results from obfuscation will come from 
designing the program with the obfuscator in mind and avoiding language constructs that 
are hard to obfuscate.  

To make obfuscation the most effective, a program should be written in a statically-typed 
object-oriented language with distinct system calls and support libraries. Additionally, 
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techniques that require an altered program (such as white-box cryptography) should be 
used whenever possible 

5 Theories on Obfuscation 
This section describes conclusions we reached about obfuscation. 

5.1 Game theory 

We analyzed the situation of obfuscator and deobfuscator in the language of elementary 
game theory. There are two ways to look at obfuscation situations. 

5.1.1 Known deobfuscator 
In this “game”, we start by defining what the secret is; that is, what information the 
defender wishes to keep from the attacker.  Then, the attacker then chooses a 
deobfuscation method, and announces it. Based on the information provided by the 
attacker, the defender is then free to choose any obfuscation method. The game continues 
with the defender obfuscating the secret with the previously chosen obfuscation method 
and passing the obfuscated information to the attacker. The attacker attempts to 
deobfuscate, using the previously announced deobfuscation mechanism. 

This situation might correspond to the cases of virus attack, where sites are equipped with 
virus detection tools. A virus creator, knowing the characteristics of the tools that 
detected viruses at each site, could attempt to create a virus that couldn’t be detected 
without updating the sites. 

It is clear that it is always possible to construct an obfuscator that will defeat a chosen, 
fixed deobfuscator, so the defender (the one obfuscating information) can always win in 
this case. 

5.1.2 Known obfuscator 
This game is similar to the first; again, we start by defining what the secret is.  But, in this 
game, the defender then chooses an obfuscation method, and announces it. Based on the 
information provided by the defender, the attacker is then free to choose any 
deobfuscation method. The game continues with the defender obfuscating the secret with 
the previously chosen obfuscation method and passing the obfuscated information to the 
attacker. The attacker attempts to deobfuscate, using the previously announced 
deobfuscation mechanism. 

This situation is more like that contemplated for Self Protecting Mobile Agents. We have 
to assume that the attacker can find out the mechanism used to obfuscate mobile agents, 
and that the only security is in the set of random choices made during obfuscation; 
otherwise we are depending on security through obscurity. Given a fixed obfuscator, our 
practical experience shows that it is possible to create a mechanical obfuscator that will 
rapidly deobfuscate the information. 
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5.1.3 Solution 
What we see from this analysis is that, if perfect information is available, whoever 
commits to a strategy (i.e. automated tool) first loses.  

5.2 Recursion Theory vs. Complexity Theory 

We contend that recursion-theoretic statements about obfuscation are sometimes not very 
meaningful from a pragmatic point of view.  For example, we can define another game, 
in which the attacker (deobfuscator) picks a program and a set of axioms for 
mathematics, and publishes them.  Then the obfuscator then produces two outputs, a real 
obfuscated program that computes the same function as the original program, and a fake 
one that does not.  The attacker’s job is then to figure out which is which, and prove it 
from his axioms.  It is not hard to prove (prove that the set of indices of total functions is 
productive and use that) that the defender can always win this game.  This result is not 
meaningful because the attacker's algorithm need not be anything close to polynomial, 
because people don't need to prove program equivalence in order to get at the secrets they 
typically want to get, and because even if for some bizarre reason the attacker did need a 
proof of program equivalence there is no reason they should limit themselves to a 
constant set of axioms. 

Another recursion-theoretic result that can be applied to obfuscation is Rice’s Theorem, 
described in section 6.1.1, which can be interpreted to say that all programs are 
obfuscated in the first place (if the secret is some property of the function that the 
program computes).  This result is not meaningful because it does describe promise-
problems, i.e. if you know that the program doesn't go into an infinite loop you can 
obviously run it and find out what it outputs.  Rice's Theorem says you cannot find out 
what it outputs because you have no such a priori knowledge.  There is a version of 
Rice's Theorem that does concern promise problems, and it says (more or less) that even 
if you do have a priori knowledge the best thing you can do with a program is run it.  
However the promise problem generalization of Rice's theorem still only deals with what 
is computable, not what is efficiently computable, so it is still not very meaningful for 
real-world obfuscation.  You can formulate a complexity-theoretic version, but it is false, 
as proven in [BGI+00] 

5.3 Automated Obfuscation is Emulation 

We believe that all automated obfuscation is merely emulation; that is, the high-level 
structure of the program is preserved by the obfuscator. For example, consider a program 
that sorts a list with bubble sort, computes a greatest common denominator with Euclid's 
algorithm, and uses polymorphic objects to distinguish different kinds of network clients. 
Under this theory, an obfuscated version of the program will still use the same sort and 
greatest common denominator algorithm, and will still use polymorphic objects, although 
the low level implementation of each may be disguised. In essence, both programs carry 
out the computation “in the same way.” An obfuscator could search for patterns in an 
input program to recognize particular algorithms and substitute alternate ones, but only 
for a finite number of algorithms. An obfuscated program preserving the structure of the 
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original is very useful for the attacker. All obfuscating transforms we implemented, as 
well as those in the Obfuscation Techniques Evaluation Report, satisfy our informal 
definition of emulation.  

We made several attempts to formalize this concept of emulation (within the context of 
achieving a result about obfuscation), but none were successful. One of the more 
interesting is to consider the program as a “deterministic automaton”: a DFA, but with an 
infinite number of states. Each state of the automaton represents a complete memory and 
register configuration. The state just before a conditional jump will have two successors, 
for the condition met and not met. Representation of other control flow is similar. Note 
that if there no loops in the automaton, the program always halts. An “emulation” of a 
program would then have a deterministic automaton similar to that of the original 
program: it could be isomorphic, or a quotient.  

Our “switchify” control-flow transform preserves the deterministic automaton structure 
of its input: only unreachable states are added. Our per-variable transforms also preserve 
structure; the new state graph is a quotient of the old. Our implementation of runtime type 
information and local variable storage added intermediate states to every operation and 
new unreachable states, but the structure of original states was otherwise unchanged.  

The failure of this approach was that some trivial changes to the program could change 
the deterministic automata's structure, and some nontrivial changes would result in a 
similar deterministic automaton. Also, some nontrivial changes to the program could 
result in a “similar” deterministic automaton but seemed more difficult to reverse than 
our definition allowed for. 

5.4 Static and Dynamic Analysis 

Static analysis tools examine a program and attempt to produce higher-level explanations 
of the program's future behavior. In addition to traditional decompilers and 
disassemblers, we also include traditional data flow analyses (typically used to enable 
compiler optimizations), program slicing, and abstract interpretation in this category.  
Static analysis characterizes all possible executions of a program, with all possible inputs, 
with respect to some property of interest.   

Dynamic analysis tools run the program being studied under a tracing environment that 
watches and records what the program actually does given chosen inputs, at any of 
various levels of detail; such traces can then be analyzed to discover future behavior and 
actual data operated on. Tracing virtual machine environments, subroutine call and 
system call tracers, test point insertion tools, data reference traces and counters, and 
packet and message tracing tools are commonly used for this purpose. Even if the 
computation of static control flow or block liveness for a program has been made 
intractable, dynamic analysis will observe the actual execution path taken by the 
program. Reverse engineers often use tracing to determine the general flow of a program, 
and then use static analysis to examine specific regions to see what they do. 

To frustrate dynamic analysis, a program creator would need to arrange that a program 
took very different execution paths on different runs of the program, so that determining 
which basic blocks were ever invoked, and in which combinations, would require 
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unacceptable effort. To make the effort large enough to discourage reverse engineering 
would probably require an expansion of program size of many orders of magnitude, and 
is at the limit of practicality. 

Wang et al [WHK+00] showed that there are obfuscation techniques that can foil static 
analysis. In order to deobfuscate those programs, dynamic analysis is necessary. This 
coincides with our experiments on obfuscation: static analysis alone is not enough. 
However, unless performed carefully, the results of dynamic analysis will only apply to 
the particular input(s) of the program specified in that run. To avoid this, dynamic 
analysis can be performed on sections of the program that do not depend on inputs. (This 
was a weakness in our obfuscator: the constructors could be partially evaluated to 
determine the virtual tables, even without inputs). Hybrid techniques, such as evaluating 
the program statements formally, may be of use in some scenarios. Had our constructors 
been designed to use the input before storing the virtual tables, running them and 
ignoring input-dependant statements would have provided the same information. 

6 Related work 
This section describes work by other researchers related to our problem. There are three 
major areas: obfuscation and deobfuscation research, reverse engineering, and 
cryptography. 

Our approach to obfuscation, along with work of Hohl [Hohl98] and Wang et al. 
[WHK+00, W00, WDH+01], aims to delay an attacker. Other researchers are looking 
into whether one could develop an obfuscator that would prevent access entirely 
[BGI+01]. Other related research is in the categories of electronic commerce and mobile 
agent protection, computing with encrypted functions, and in practical obfuscation and 
reverse engineering and decompilation. These are described in section 6.1. 

Section 6.2 describes reverse engineering, including both static and dynamic methods, 
some assisted by hardware. 

People occasionally try to draw parallels between obfuscated programs and cryptographic 
functions, arguing that obfuscated programs have similarities to cryptographic functions 
and that the security of the obfuscated program should bear some resemblance to the 
security of cryptographic functions. In Section 6.3 we will see that it is the cryptographic 
functions whose security begins to resemble the security of obfuscated programs when 
the adversary can engage in probing attacks that are not as severe as what a reverse 
engineer can subject an obfuscated program to. 

6.1 Obfuscation and Deobfuscation Research 

Obfuscation has been studied as both a pragmatic discipline and a theoretical topic in 
mathematics. In order to prove that any obfuscation method works, we need to 
understand the limits that theory of computability places on what can be proved, and the 
limits that complexity theory enforces on the difficulty of the task. 
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6.1.1 Rice’s Theorem 
Rice’s theorem says that given a non-trivial property P of Turing-acceptable languages, 
the problem of identifying the property in the language of some Turing machine is 
undecidable. 

There are two types of questions that a deobfuscator could ask:  (1) questions about the 
program’s representation (ex: object or source code), and (2) questions about the function 
that it computes.  Rice's theorem says that type 2 questions are undecidable; therefore no 
program could be guaranteed to answer it.   

This means that if a deobfuscator has only black box access to a program, it is 
fundamentally limited in what it discover.   

6.1.2 The Rice-Shapiro Theorem  
The Rice-Shapiro theorem proves that non-trivial type 2 questions are not recursively 
enumerable (RE) or co-RE either, meaning that given a type 2 question there are cases 
where it is impossible to prove that the answer is correct, even if the answer is known.  
This result holds under any proof system; if a proof system is extended to add a proof for 
one case, there will always be another case it cannot prove.  Consequently, general 
solutions to type 2 problems are not possible.   

It should be noted that although a general solution to a type 2 problem is not possible, the 
specific instances of these problems that occur in the real world are often solvable.  For 
instance the Halting problem is not decidable, but given a real-world program it is often 
possible to prove whether or not it halts based on human understanding, which is not 
bound by algorithmic limitations.   

This suggests that attackers seeking to answer type 2 questions about an obfuscated 
program would not be able to write general tools to do it, but would be able to sit down 
with a debugger and figure out how it works.  This is indeed how deobfuscation is 
typically done.  Consequently, the process of deobfuscating type 2 information in the real 
world is a human one, not a computational one, and therefore no meaningful bounds can 
be put on its difficulty.  One can only estimate the difficulty by the time it takes real 
people to solve it. 

It may seem contradictory that the question “what does the program output for a 
particular input?” is a type 2 problem, because the “solution” is to simply run the 
program on that input.  Technically, the problem is unsolvable because the program may 
never halt, or it may halt after a very long time.  This counterintuitive result suggests that 
sometimes we should consider the deobfuscation problem “solved” if we have a 
procedure that can solve it given that the obfuscated program is guaranteed to halt.     

One might imagine that such a conditional solution is possible even though a general one 
is not. Barak et al. in [BGI+00] prove that this is not the case (except for trivial 
instances): in fact they prove that if P is a type 2 problem that is solvable with respect to 
some guarantee (i.e. it is a “promise problem”) then P is solvable given only oracle 
access to the obfuscated program (oracle access to a program essentially means access to 
a black box which runs it for t steps; if the program terminates within t steps the output is 
given, if it does not terminate, the output is a special message indicating it).  In other 
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words, obfuscation does not make P more difficult because solving P does not require 
access to the internals of the program. 

Thus from a pure decidability point of view, all programs are obfuscated to begin with.  
Given program P that computes function f, anything that can be learned about f can be 
learned with only oracle access to P and the length of P.  A natural question to ask is 
whether or not the previous sentence is still true if “learned” is replaced with “learned 
efficiently,” which (very informally) is the main question that Barak et al. [BGI+00] ask 
and answer in the negative.    

Type 1 questions may or may not be solvable in principle, but every obfuscation problem 
based on one we have encountered was solvable.  For example, an obfuscator may add a 
copy prevention mechanism to a program.  This mechanism may be parameterized by 
random input, and the obfuscator could be run several times on the input program.  Then 
there are several versions of the obfuscated program that are distributed, with the hope 
that if the copy protection in one version is broken by hand, the work would have to be 
done all over again for another version.  The associated type 1 deobfuscation problem is 
to write a program that automatically cracks any version of the copy-protected software.   
Another example: there is a program p(x,y) known to Alice and Bob.  Alice gives Bob an 
obfuscated version p'(x) which computes p(x,y0) for some fixed y0.  Bob 's type 1 
deobfuscation problem is to determine y0.  These two problems share a common feature: 
the deobfuscator has some a priori knowledge of the obfuscator and the input program.  
In fact, every interesting type 1 deobfuscation problem will have this property.  It is hard 
to imagine interesting questions that the deobfuscator could ask about an arbitrary 
obfuscated program except “What does it do and how does it do it?” and “Does it have 
characteristic X?”  Most deobfuscation attempts will be done with some knowledge of 
the program and the secret being protected (e.g. remove the copy prevention, obtain the 
maximum bid from the auction mobile agent).  

6.1.3 Cohen: Evasion and Mutation 
Fred Cohen [Cohen92] was one of the first investigators of techniques to obfuscate 
programs. He proposed the notion of program evolution, where programs could protect 
and obfuscate themselves by either mutating themselves or by being mutated by another 
program into an equivalent program.  Two programs are considered equivalent if, given 
identical input sequences, they produce identical output sequences.  The paper focuses on 
proposing techniques and provides simple illustrative examples of the techniques. 

The equivalence of two programs is undecidable as is the determination of whether one 
program can evolve from another. However the author notes that practical considerations 
may limit our ability to reach the levels of complexity of equivalent programs “required 
to eliminate concerted human attack, but we may succeed in increasing the complexity of 
automated attacks to a level where the time required for attack is sufficient to have 
noticeable performance impacts, even to a level where no attacker is able to design a 
strong enough attack to defeat more than a small number of evolutions.”4  

                                                 
4 In the “Techniques for Program Evolution” section of [Cohen92], see 
http://www.all.net/books/IP/evolve.html 
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More specifically, Cohen proposed the following obfuscations: 

• Equivalent instruction sequences, i.e. replacing a sequence that adds 17 to some 
number with one that adds 20 and subtracts 3. 

• Variable substitutions, i.e. altering the locations of memory storage areas to 
inhibit the static examination and analysis of parameters and altering memory 
references throughout a program without affecting program execution. 

• Variable relocation 

• Mangling control flow by adding jumps and subroutine calls 

• Garbage insertion:  Given an instruction sequence, inserting a meaningless 
independent sequence. 

• Program encodings that are decoded just before execution, i.e. compression and 
encryption. 

• Encoding the program for a different platform and using an interpreter to execute 
it. 

He also suggested building redundancy and self-checking into these modified programs 
along with anti-debugging features and suggests that the techniques should be combined 
for best results. 

Cohen reported performing some experiments; however no obfuscation tool appears to be 
available. 

6.1.4 Collberg: Obfuscation and Watermarking 
Collberg’s team investigated properties of a large number of potential obfuscation 
techniques including techniques for obfuscating general program layout, control 
obfuscation, data obfuscation, “preventive” obfuscation techniques (i.e., techniques to 
defeat known de-obfuscators), and opaque constructs [CTL97a, CTL98a, CTL98b, 
CT02].   

The techniques they examined for general program layout include scrambling identifiers, 
removing comments, and changing formatting. Their control obfuscation techniques 
include inserting dead code, interleaving methods, and loop fusion.  Data obfuscation 
techniques they studied include splitting variables, refactoring classes, and merging scalar 
variables. Their preventive obfuscation techniques are designed to defeat known de-
obfuscators by using artificial data dependencies, aliasing parameters, etc. The opaque 
constructs include opaque predicates and making programs more parallel with multi-
threading.   

Collberg et al. have announced SandMark [SM03], a tool for software watermarking, 
tamper-proofing, and code obfuscation of Java bytecode. This tool was originally an 
implementation of the Collberg-Thomborson watermarking algorithm. Recently the 
scope of the tool has expanded significantly with additional watermarking and 
obfuscation techniques.  The obfuscation techniques include [Col03]: 
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• A number of code obfuscations from Collberg, Thomborson, Low's “Breaking 
Abstractions and Unstructuring Data Structures” [CTL98b] and “Manufacturing 
Cheap, Resilient, and Stealthy Opaque Constructs” [CTL98a],  

• An implementation of Paul Tyma's name obfuscation algorithm: Method for 
renaming identifiers of a computer program, US patent 6,102,966,  

• Additional code obfuscations including (inlining, Boolean variable splitting 
(using XOR, parity, and equality splitting algorithms), class splitting, array 
obfuscations) and an obfuscation loop that selects and applies a sequence of 
obfuscations to a program,  

and in the upcoming release: 

• An opaque predicate library,  

• Control flow obfuscations that rely on opaque predicates,  

• A number of code reordering obfuscations, and a string obfuscator.  
The toolbox provides many obfuscation techniques, but is not accompanied by an 
argument we can use to show resistance to deobfuscation for any minimum time.  

6.1.5 Wang et al: Obfuscation 
Wang et al. [WHK+00, W00, WDH+01] have implemented several control and data 
obfuscations in a source-to-source tool for C language programs.  Of particular interest to 
this project is their technique for flattening control flow, and for exploiting the difficulty 
of alias analysis to prevent static analysis.  They studied the performance and precision of 
the results of running static analysis tools, specifically the IBM NPIC tool [HBC+99], 
and the Rutgers PAF toolkit [Rutgers], on outputs of their obfuscator. They also provide a 
worst-case complexity analysis of their flattening and aliasing techniques against static 
analysis.   

In addition to the obfuscation techniques that Wang et al. have implemented, they discuss 
a survivability architecture and a number of other potential obfuscation techniques. These 
techniques include multi-threading, variable splitting and obfuscating procedure call and 
function call interfaces. 

6.1.6 Hohl: Time Limited Black Box 
[Hohl98] proposes using code and data obfuscation techniques to construct time-limited 
black box agents.  He assumes that these agents can execute safely for a period of time, 
based on how much time-consuming reverse engineering is required for a host to know 
how to make any changes to an agent's code or state that could be useful to the host.  
During this period an attacker can, at most, make random changes to the mobile agent.  
Similarly, this technique protects secrets for a limited period of time, since a host must 
reverse-engineer an agent to know how to interpret its state.   

Like all programs, obfuscated agents are subject to black box testing.  [HR98] defines a 
protocol to detect such testing by using a trusted registry server to monitor agent 
execution. 
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6.1.7 Barak et al: Obfuscation is Impossible 
Barak et al. [BGI+01] presented a paper on the theoretical limits of obfuscation 
techniques.  Informally, they prove that all obfuscators leak some information, in fact 
there is a question whose answer is that all obfuscators must leak, or put another way, a 
completely secure obfuscator is impossible.  

To be more specific, one must first define what “secure” means in the obfuscation 
context. One approach is to examine a single use case by specifying the secret to protect 
and defining "security" as that which makes the secret difficult to deobfuscate. The 
disadvantage of this approach is that it must be repeated for every problem.   

An alternative would be to prove a very general security property of an obfuscator once 
and for all, and then use obfuscation as an opaque building block for other protocols, 
algorithms, and techniques.  This second type of analysis is the sort used to describe the 
security of cryptographic methods; higher-level constructs such as pseudorandom number 
generators are built up and analyzed in terms of lower level ideas such as one-way 
functions.  In trying to apply this sort of analysis to obfuscation, the “virtual black-box 
property” (VBB) seems to be the most natural and useful definition of security. 
Informally an obfuscator is VBB-secure if given white box access to a program, an 
attacker could derive no more information about what the program computes than they 
could with black box access.  Barak et al. prove that no obfuscator is secure in this sense; 
they prove it for circuit obfuscators by describing a class of properties of programs (or 
circuits) that cannot be obfuscated.  They also examine a particular use case and show 
that it is impossible to protect with obfuscation, whether the obfuscator is VBB-secure or 
not.   

These results strongly suggest that analysis of obfuscation must be done on a use-case 
basis, because it is impossible for an obfuscator to be secure in every case. This paper 
does not prove, and should not be construed to say, that there are no use cases that can be 
secured with obfuscation; in fact it suggests several weaker criteria for obfuscator 
security that may be useful for certain cases.  It only proves that no obfuscator is 
completely secure in the general case. The reason their conclusion does not preclude 
obfuscation for particular use-cases is that the information leaked may be of no value in 
that use-case. 

One should note that the formalism used in [BGI+01] addresses only the situation where 
the obfuscator is seeking to hide information about the function that the program 
computes.  In fact the VBB definition of security can be thought of as the strongest 
possible complexity theoretic definition of security in this situation. In this sense it is 
very similar to the definition of secure computation given in [MR91].  

6.1.8 Sander/Tschudin/Cachin/Micali: Computing with Encrypted Functions 
E-commerce and mobile agent security research has sought a method to compute 
encrypted functions on the agent platform. Several researchers have sought methods to 
encrypt a function, send it to a remote location, and execute it such that the execution 
environment could obtain the result but not know the function. This work is summarized 
here.  In effect, these techniques obscure the operation of a program by cryptographic 
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techniques and in some cases by also distributing the program across multiple agents or 
to trusted servers.  

The mobile agent paradigm can be viewed as a situation where several mutually 
distrusting parties want to perform a computation, while keeping certain parameters of 
that computation secret from each other.  The problem is further constrained by the 
requirement that the computation take place off-line, i.e. once the agent is sent from one 
host to the next, no further communication is required between them to run it.  In 
[GMW87] it is proven that without that constraint, and assuming that the majority of 
players are honest, then there is a cryptographic protocol that allows them to carry out 
their computation securely.  This protocol does not rely on obfuscation in any way and is 
provably secure under reasonable assumptions. Since then a great deal of progress has 
been made towards a general solution to the mobile agent problem, using techniques 
based on oblivious transfer of secrets and encrypted circuits. 

Sander and Tschudin [San98a, San98b, San98c] describe a model where a source 
launches a mobile agent that executes some program on an untrusted host (the agent 
receives inputs from the host), and then sends the results back to the sender. In their 
approach, the host executes a program that embodies an enciphered function.  The host 
cannot decrypt the program to discover the original function. The only information 
exposed to the host is the result it computes and the inputs it provided. 

The techniques of Sander and Tschudin are effective only for the evaluation of 
polynomial expressions, a very limited subset of agent algorithms. Sander, Young and 
Yung [SYY99] have developed a polynomial time (in circuit size) technique by which 
any circuit in NC1 (functions with circuits that are logarithmic in the size of their inputs) 
can be evaluated.  
Cachin et al. [CCK+00] developed a technique that, assuming the hardness of the 
decisional Diffie-Hellman problem, can be used to protect polynomial-size circuits, and 
they described how to support mobile agents that visit multiple hosts.  These approaches 
do not allow interaction between the encrypted function and the executing host, i.e., the 
agent receives inputs from the host, but cannot provide clear-text results to the host. In 
particular [CCK+00] proves that if an agent can be expressed as a circuit, has a fixed list 
of hosts to visit, and does not need to provide output except to its originator when it 
returns, then there is a protocol for its execution that doesn't reveal any information to 
any of the parties that they would not already know.  In a sense this is a generalization of 
oblivious transfer: The agent’s input is a database and the agent is a query.  The protocol 
allows a query to be answered without the database knowing what the query was.  

The requirement of [CCK+00] that the agent not provide output to the hosts arises 
because it is impossible to prevent the hosts from simply rerunning the agent on different 
inputs in order to gain more information then they ought.  In order to prevent such reruns, 
[ACC+01] adds a generic third party to the situation.  The third party does not need to 
know anything about any particular agent and cannot learn anything about the agent 
computations without colluding with one of the participants.  The addition of this third 
party allows rerun attacks to be eliminated, because running the agent requires 
communication with the third party, so the requirement that the hosts not receive output 
from the agent is lifted.  Furthermore the agent can specify its next destination on the fly, 
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instead of needing a fixed list of hosts to visit.  In principle [ACC+01] provides a solution 
to a subset of the problems that the SPMA project set out to solve. For example, the 
“comparison-shopping” agent can be made secure by it, although as the agents get bigger 
the protocol can get quite slow, and the method becomes impractical for medium or large 
agents.  Also, any agent that requires frequent communication with the host (e.g. database 
searches) would be completely unsuitable, as the agent would have to contact a trusted 
server after each round of communication. The introduction of a trusted third party is 
similar to SPMA’s multiple agentlet scheme; in fact, one could replace the third party 
with an agentlet that implemented the third party protocol and ran unencrypted on a 
separate host from the primary agent.  Clearly then the two hosts running agentlets would 
have to collude in order to learn anything they weren’t supposed to, because the second 
host is playing the role of the generic third party. 

These techniques are limited to solving small functions and if a trusted server T is used, 
and the server crashes, the protocol stops: another trusted server cannot be used to 
complete the protocol. T must not collude with either the originator or the other hosts in 
order to protect everyone’s interests.5  The Cachin et al. model only considers a single 
interaction between the mobile agent and each host that it visits and a mobile agent only 
visits a host once, but simply visiting a host repeatedly (with a different version of the 
program) can simulate multiple interactions.  

6.1.9 Cloakware 
People at Cloakware have written several papers [CW00, CW01a, CW01b, CW01c] on 
obfuscation. The company uses the term “Tamper Resistant Software” to describe their 
approach. Their overall approach is similar to Wang et al: obfuscation is designed to 
eliminate any benefit of static analysis and force a difficult dynamic analysis to be 
performed.  In particular, the problem of statically analyzing the control flow of the 
transformed program is showed to be reducible from the acceptance problem for Linear-
Bounded Turing Machines (LBTM).  Since the acceptance problem for LBTMs is 
PSPACE-complete, the problem of statically analyzing the transformed program's control 
flow graph is PSPACE-complete as well. 

Cloakware’s product obfuscates control flow by 1) applying transformations to sequential 
programs that flatten their control-flow structure, and 2) grouping the control-flow of the 
source program on a switch statement called a dispatcher, so that the targets of static 
jumps are determined dynamically. The dispatcher may be viewed as a deterministic 
finite-state automaton (DFA).  Cloakware claims that once the program has been 
transformed in this manner, in order to obfuscate the program's flow control, it suffices to 
apply further obfuscation techniques to the dispatcher. Having already established that 
the problem of analyzing the dispatcher, named the REACHABILITY problem, is 
PSPACE-complete, the Cloakware paper proposes implanting another instance of this 
PSPACE-complete problem into the design of the dispatcher.  Essentially, they take the 
natural instance of the problem that emerges from applying their transformation to the 

                                                 
5 The authors want to limit what the originator and the hosts can learn about the inputs provided by the 
other hosts. 
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source program, and another instance of the problem that is the encoded form of an 
instance of the LBTM acceptance problem, and form a combined, merged instance of 
their REACHABILITY problem. They then argue that the resulting obfuscated program's 
resistance to deobfuscation of the program's control flow is guaranteed by the hardness of 
the implanted, merged instance of the problem.  This portion of their argument appears to 
be intuitive, rather than rigorous, as they do not establish an argument regarding the 
inability of an attacker to separate the merged instance of REACHABILITY into the 
original two instances. 

There is a second point upon which their argument is intuitive rather than rigorous.  They 
argue that: 

The redundancy of program components is the basic property to be checked to 
comprehend (or to optimize) a program.  Therefore, it is highly reasonable to 
measure a resistance of obfuscated programs in terms of the complexity of 
redundancy checking for these programs. 

Their argument then continues by establishing that determining if a basic block of code, 
or a variable is redundant, is itself a PSPACE-hard problem.  While the formal part of the 
argument is undoubtedly correct, it is an open question whether other techniques that do 
not directly attack the redundancy problem can be used to successfully perform static 
analysis of the program's control flow.   

Next we consider Cloakware's complementary effort in obfuscation of data as opposed to 
code. They obfuscate data by a combination of several mathematical transforms, these are 
[NCJ01]: 1) polynomial transforms based on linear additive and multiplicative encodings; 
2) residue transforms (essentially using Chinese Remainder Theorem to represent 
integers) and 3) “matrix or multi-linear” transforms using polynomials of several 
variables. Cloakware conducted a reverse engineering experiment on their data 
obfuscation using an outside organization. [NCJ01]. As a result of the experiment they 
claim that their data transform techniques alone can delay a knowledgeable insider for a 
month from successfully reverse engineering the transformed program. They define a 
successful reverse engineering of a program as reaching a level of program understanding 
sufficient to successfully alter the program's execution. 

They report that their techniques increase a program's size by a factor of three to five 
times [NCJ01] (2-3 times in [NCJ+02]), and a slow down a program by about five to ten 
times [NCJ01] (4-5 times in [NCJ+02]) but point out that only part of the program may 
need to be obfuscated. 

Cloakware’s commercial product may use some of the techniques described above. 
Sample code obfuscated with their product may be available only when reviewers sign an 
agreement. Because of this, the security of the scheme is questionable. Additionally, their 
results contradict both [Appel02] and [Schwab]. 

6.1.10 Appel 
Prof. Andrew Appel of Princeton recently produced a nice result showing that 
“Deobfuscation is in NP”  [Appel02]. He considered the complete deobfuscation problem 
i.e., positively determine the entire “source program” or a trivial equivalent from the 
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obfuscated binary.  More formally, Appel assumes that the obfuscator is known, runs in 
polynomial time, and that the obfuscated programs are only polynomially slower then the 
source programs they were produced from.  Further he assumes that the obfuscator is a 
deterministic algorithm (F) that takes a program to obfuscate (S) and a key (K).  He then 
defines “complete deobfuscation” of an obfuscated program P as finding a source 
program that when obfuscated yields P.  The algorithm is simply to nondeterministically 
guess all source programs, guess a key, compute P’ = F(K, S), and verify that P’ = P.  
This problem is clearly in NP because every element is polynomial.  

What this result tells us is that in NP-time one can “reverse” the obfuscator.  It does not 
necessarily mean that one can find the information wanted in NP-time, because that 
might be hard even without obfuscation.  For instance, one might want to know whether a 
certain program is malware (e.g., “wipes the hard drive”).  Malware writers may use 
obfuscation to make it more difficult to determine this.  Appel’s result says that in NP-
time one can reverse the writers’ obfuscator, but it does not say that one can determine if 
the program is malware in NP-time, because determining if a program is malware is 
undecidable whether it is obfuscated or not. 
Since many program analysis problems are undecidable, or at least not NP, many authors 
have tried to embed these problems into their obfuscators in the hope that deobfuscation 
would inherit this hardness and also be outside of NP.  Appel’s result says that these 
arguments are necessarily erroneous.  This error may arise from a backwards reduction 
(A is hard, B can be reduced to A therefore B is hard), or as above, because the 
deobfuscation problem under study was outside NP even for unobfuscated programs, or 
for other types of faulty reasoning. 

Appel further states that, 

 “In practice, it is my suspicion that program obfuscation will not provide 
strong security in practice because the resources and techniques available 
to attackers are so numerous and powerful: debuggers, simulators, test 
coverage tools, decompilers. Then, once the attacker has information 
about the algorithm F, it should be possible to make specialized execution-
analysis tools tuned to F.”    

This point of view is consistent with our own.  Also, in practice one may not need to 
completely deobfuscate a program in order to attack it, and one can typically break down 
the deobfuscation problem for a program into multiple smaller/simple deobfuscation 
problems and solve them piecemeal.  

6.1.11 Ahpah and InterTrust 
Ahpah Software produced a commercial Java decompiler and an obfuscator and once 
claimed that its obfuscator could not be reversed. More recently, their web site states that 
on further reflection, they believe that unbreakable obfuscation is impossible. We 
discussed their position via email with Paul Martino, formerly a principal of Ahpah, 
especially the statement “we did a lot of research on obfuscation and it's impossible” in 
their FAQ. Ahpah, InterTrust, and Princeton did a five-year research project on 
obfuscation, funded by a commercial organization.  They chose similar obfuscation 
strategies to ours: making control flow dynamic, changing the representation of variables, 
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commuting control flow, etc.  However, they ran into the same problem we did.  Except 
for a few instances of irreversible information loss (variable names, variable extents, 
etc.), they could think of a way to reverse the transforms as quickly as they came up with 
the transforms themselves.  As far as theoretical results go, they do not have any, because 
their employer was much more interested in the practical side of things.  Another former 
member of this team stated informally that InterTrust felt that the hacker community 
would be able to break the best they could do within 24 months.  

6.1.12 Schneier 
Bruce Schneier’s CRYPTO-GRAM articles often contain statements about trusted client 
software (which many uses of obfuscation aim to create) being impossible. The May 
2000 CRYPTO-GRAM in particular, says, “Building a trusted client in software, and 
trying to limit the abilities of a user, on a general purpose computer is doomed to failure. 
For now, though, it provides a nice false sense of security.” [Sch005] He also discusses 
Kerckhoffs’ Principle (that a cryptosystem should not need a secret algorithm) in relation 
to other security schemes: “A corollary of Kerckhoffs’ Principle is that the fewer secrets 
a system has, the more secure it is. If the loss of any one secret causes the system to 
break, then the system with fewer secrets is necessarily more secure.” [Sch025] 

6.1.13 Fraunhofer CCRG 
Chenghui Luo at the former Fraunhofer Center for Research in Computer Graphics had 
an AFRL project for Rome Labs. Their web page claimed they can do “perfect” 
obfuscation and watermarking. What they mean by “perfect" is that they obfuscate the 
program and the libraries it calls (as our JBET obfuscator does also). Luo states, “It’s 
hard to define a quantitative measure for the strength of obfuscation, and in our project, 
we didn't define it. The reason is that obfuscation is to remove or hide information, which 
falls in the ‘security from obscurity’ model, so it may be a wrong question to ask, based 
on a ‘security from complexity’ notion.” [Luo02]. 

6.2 Reverse Engineering 

The purpose of code obfuscation is to prevent reverse engineering.  See Figure 2 for an 
illustration of the reverse engineering process.   
A good deal of the research on reverse engineering does not consider obfuscated 
programs.  This section describes some of the tools and techniques that do. 

We partition these tools and techniques roughly into static and dynamic methods. 
However, real attempts at reverse engineering software whether performed in a lab or “in 
the wild” (e.g., by software license crackers [Acad]) involves the use of both types of 
techniques. 
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Figure 2: Mainstream software engineering and reverse engineering tasks [PTO-DR] 

Figure 2 depicts the traditional breakdown of software (forward) engineering and reverse 
engineering tasks.  We view decompilation and disassembly as the lowest forms of all 
software reverse engineering and when dealing with an obfuscated program these are the 
most difficult steps, especially when the goal of the reverse engineering is to accomplish 
the recovery of a secret or the bypassing of a control. 

6.2.1 Static Reverse Engineering Methods 
Static methods are essentially algorithmic methods: i.e., they can be modeled as applying 
an algorithm that produces useful information from the obfuscated program (e.g., a less 
obfuscated version of the program. Note that a standard binary is more obfuscated than 
the assembly source, which is more obfuscated than the high-level source.) The static 
methods used by the reverse engineer may be known to the obfuscator prior to 
performing the obfuscation. 

In mainstream reverse engineering there are two primary classes of static methods, 
disassembly and decompilation, which are discussed below. Such methods can be 
abstractly modeled in complexity theory but much care must be taken in interpreting the 
results since a tool that only provides an approximate solution to a deobfuscation problem 
(e.g. detects 90% of the dead code) may be nearly as useful to an experienced reverse 
engineer as a perfect solution and problems that are theoretically difficult in the worst 
case may have efficient solutions in the average case, special cases, etc. 

6.2.1.1 Disassemblers 
Disassembling is the process of translating an executable program into its equivalent 
assembly representation. The greatest problem in disassembling is distinguishing code 
from data especially on architectures that can execute from data segments, store data in 
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code segments, or write to code segments.  In principle this problem can occur in any 
architecture because a program can store another program as data and simulate it. 

The problem occurs mainly when data is embedded inline with code.  On variable-length 
instruction architectures, mistakenly disassembling inline data can cause instruction 
alignment problems in the disassembler, causing it to incorrectly disassemble the code 
that follows the data.  Disassembly accuracy can be improved by making use of 
knowledge of compilers and libraries, but that method is not generally explored for 
obvious reasons.  The best algorithms currently available essentially do a reachability 
analysis under the assumptions that only jump targets contain executable code and that all 
code that is executable is jumped to [Schwarz]. 

In theory, accurately disassembling a program in the general case is undecidable and 
hence cannot be fully automated for all programs.  However even partial disassembly of a 
program is a great aid to the reverse engineer, who can combine partial disassembly 
(from static disassemblers) with disassembled execution traces generated by debuggers, 
logic analyzers or in-circuit emulators.  

Most debuggers provide a simple disassembler and there are a number of stand alone 
disassembler products [PTO-DA], therefore these tools are readily available to potential 
adversaries of the developers of obfuscated programs.  

6.2.1.2 Decompilers / Reverse Compilers 
Since disassembly is required for decompilation, decompilation has all of the same issues 
in addition to the issues around identifying the nature and scope of control structures, and 
reconstructing non-primitive data types.  

The main steps in decompilation are [PTO-DR]: 

• Disassemble the program.  This step is crucial because all other analyses depend 
on it.  For example, the quality of a control-flow analysis depends on the quality 
of the raw control-flow information it gets. 

• Perform semantic analysis to recover low-level data types such as integer 
variables, and to simplify the decoded instructions based on their semantics. 

• Perform data-flow analysis to remove low-level aspects of the intermediate 
representation that do not exist in high-level languages (e.g., registers, condition 
codes, stack operations) and to reconstruct expressions. 

• Perform control-flow analysis to recover the high-level control structures in each 
procedure.  

Perform type analysis to recover high-level data types such as arrays and structures, 
classes, etc. 
Architecture alone can make a program easy or hard to decompile.  For example, Java 
bytecode is relatively easy to disassemble and is very object-aware.  Class files are 
already structured into classes and methods, and the instruction set has single instructions 
to do complex, high-level things like call a virtual method.  Consequently, a lot of the 
work involved with executing a Java program is done by the virtual machine.  By 
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comparison, the work that can be done by a single instruction on a real processor is 
relatively small because of practical limitations.  A C++ compiler for a real architecture 
has to synthesize all of its OO functionality from much lower-level primitives, which 
obviously requires more work to interpret as high-level phenomena. 

Interestingly, many of our obfuscations attempt to make Java bytecode look more like 
C++ object code. 

6.2.1.3 Specialty Tools and Techniques 
Many tools and techniques have been developed by the research community to perform 
static analysis on object and source code.  Such techniques include program slicing and 
alias analysis. 

6.2.1.3.1 Program Slicing 
The slice of a program with respect to a set of program elements S is the program 
elements that S is, or might be, code- or data- dependent on.  Slicing gets rid of code and 
data that are irrelevant to S, effectively reducing the size of the program to analyze 
[WPS].  

Extensive research has been done on slicing including work by Weiser [Weiser84], Tip 
[Tip95], Horwitz [KH02] and Reps [RT96, Reps98]. This research has led to the 
development of research slicing tools including The Wisconsin Program-Slicing Tool 
[WPS], Chopstick [CP], and commercial products such as CodeSurfer [CS03]. 

Slicing has also been used to extract functions of interest from executables [LV97]. 

6.2.1.3.2 Alias Analysis 
Aliasing occurs in a program when multiple pointers reference the same memory location 
but are used separately.  Given two pointer variables that refer to the same object, making 
a change through one changes the value that would be read through the other.  Any 
analysis that considers data flow will be affected by knowledge that the pointers refer to a 
single object as opposed to two.  As a result, being able to detect aliases has implications 
for many types of static analysis as well as for reverse engineering.   

The problem of detecting aliases comes in several forms, whose solutions belong to 
different theoretical complexity classes [LR91, Deut94].  Programming mechanisms that 
create aliases include the following: reference formal parameters, single-level pointers, 
multiple-level pointers (i.e., pointers that point to pointers), and pointers to structures 
containing pointers. Alias analysis is used in software analysis tools such as JAAT 
[KOK+01] and Ajax [Ajax]. 

6.2.2 Dynamic Methods 
Reverse engineers typically employ a combination of static and dynamic methods to 
analyze a program.  The following summary of the reverse engineering of the Internet 
Worm from the famous “With Microscope and Tweezers” paper [ER89] demonstrates 
this. 
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The Internet was attacked on November 2, 1988 by a virus. In response a handful of 
teams across the country worked to reverse engineer the virus to discover how it worked, 
specifically, the vulnerabilities it exploited and how it propagated. The MIT team 
reported their findings in [ER89].  They conducted their analysis mainly by decompiling 
the virus rather than through black box testing. The team viewed the 
deobfuscation/reverse engineering task as: 

• isolating a specimen of the virus in a form, which could be analyzed. 

• “decompiling”6 the virus, into a form that could be shown to reduce to the 
executable of the real thing, so that the higher level version could be interpreted. 

• analyzing the strategies used by the virus, and the elements of its design in order 
to find weaknesses and methods of defeating it. 

The first two steps were completed in less than two days, primarily by the efforts of the 
MIT team and people at Berkeley.   

While the virus used a number of methods to obscure itself including preventing core 
dumps and erasing its argument list it was not really obfuscated nor was the actual virus 
very large. Its only real obfuscation was the XORing of strings. 

It should be pointed out that the goal of the MIT and Berkeley teams was a complete 
understanding of the virus, not just understanding a single mechanism.  When the goal is 
defeating copy protection [Gos85] the reverse engineer only needs to know about the 
copy protection mechanism; and providing effective defense through obfuscation is more 
difficult simply because the goal is smaller.   

In the remainder of this section, we will discuss some of the dynamic analysis tools that 
are available.  These tools all offer greater capability and better protection against anti-
reverse engineering techniques than the tools used by MIT and Berkeley. The typical 
dynamic analysis tools available to the reverse engineer consist of debuggers and 
software emulators as well as logical analyzers and in circuit emulators.  

6.2.2.1 Debuggers and Associated Tools  
A debugger is a utility program that allows a reverse engineer to run a program while 
controlling its execution and examining the values of its variables.  Many debuggers 
provide an execution history mechanism that at a minimum allows a reverse engineer to 
see a trace of previously executed instructions.  Typically these traces are of limited 
length and are read only, i.e., the reverse engineer cannot roll back the state of the 
program, change an earlier state, and then resume execution. 

EXDAMS [Bal69] was one of the first debuggers to provide a long execution trace 
facility. It was an interactive FORTRAN debugger developed in the late 60’s.  Under 
EXDAMS the program being debugged was first executed in its entirety and the full 
                                                 
6 Decompiling was performed by first doing tool assisted disassembly, followed by with decompilation 
done by hand. The disassembly tools were simple disassembler (adb), an architecture manual, and the 
UNIX sources.  However, even at the time (Nov. 1988) based on its experience with PC viruses, the 
National Computer Security Center felt that more sophisticated analysis tools must be developed.  
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execution history was saved. Then the program was “re-executed” through this trace. 
This re-execution could be backtracked any time using the trace. However, the reverse 
engineer could not change values of variables or registers.   

INTERLISP [TM81] and the Cornell Program Synthesizer [TR81] provided execution 
traces with undo operations. These systems maintained a history list of operations while 
recording their side effects. They used bounded history lists: as new events occurred, the 
existing events on the list were aged, with oldest events “forgotten.”   The first complete 
execution trace solution was provided by the experimental Spyder debugger [ADS91].  
By using such a tool the reverse engineer can stop the program at any point and examine 
past events that lead up to the current state, restart the program in a modified version of 
the previous state and observe the impact of the changes. Depending on how a debugger 
is implemented, a program can detect that it is running in a debugger and attempt counter 
measures.  

6.2.2.2 Software Emulators 
Simple software emulators are essentially instruction set interpreters for various 
processors or family of processors.  More sophisticated emulators such as the Stanford 
SimOS/Embra [SimOS, Embra, RBD+97, WR96] emulate processors, caches, and 
memory systems of a set of processors.  Some systems are toolkits for building emulators 
for different architectures [UC00, OG98]. For example, the New Jersey Machine-Code 
Toolkit [NJMCT, RF97].  This toolkit provides a specification language for describing 
the behavior of processors allowing a reverse engineer to create emulators for new 
systems. It is reasonable to assume that the reverse engineer of a program that we would 
obfuscate may have a high quality emulator. The emulations are typically not perfect; for 
example, providing the correct timing is difficult and detectable, so if the emulator is 
known to the obfuscator it may be possible to exploit such imperfections to improve the 
obfuscation.  

6.2.2.3 Logic Analyzers 
A logic analyzer is a physical test instrument used for developing, debugging, and 
maintaining digital systems. A logic analyzer can show the prior events that occurred at 
probe points when triggered by a predefined set of stimulus signals and subsequent 
events. Two well-known manufacturers of logic analyzers are Agilent/HP and Tektronix.  
Their systems support many popular processors. 

Logic analyzers provide the reverse engineer the ability to monitor a program without the 
program being able to detect the monitoring even if the obfuscator has knowledge that the 
monitoring will occur. The logic analyzer may be a stand-alone system or PC-based. 
Some common characteristics of interest to software reverse engineers: 

• A good analyzer automatically disassembles, shows executed instructions and 
filters out unexecuted code fetches, trigger in instruction execution patterns, 
memory access patterns, register contents, data bus patterns.  

• Analyzers provide large buffers for storing system activity that occur before and 
after a trigger. 
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• Acquire every bus cycle in real time without interfering with full-speed operation 
of the processor or bus; probing cannot be detected in software so static 
obfuscations cannot provide a defense.  Only dynamic obfuscations can , which 
currently push the limit of what is feasible.  

• Some systems correlate execution traces to high-level source code (if source 
provided by the user).  This can be very handy if the reverse engineer is dealing 
with an executable with partially known source code, i.e., standard language 
library. 

6.2.2.4 In-circuit Emulators 
Unlike a logic analyzer, which attempts to passively monitor signals sent between 
devices, especially between processors and memory and I/O devices, an in-circuit 
emulator replaces a component of the system with a special device (sometimes called a 
pod).  The pod is controlled by the emulator and provides data to it.  Unlike a logical 
analyzer the emulator can stop execution and change the contents of the emulated 
processor registers. These devices are especially well suited for injecting faults for 
reverse engineering purposes. In-circuit emulators and related systems such as in-circuit 
debuggers offer the reverse engineer greater capability than a logic analyzer, but at some 
potential loss in stealth since the pod is not exactly the same as the device it is replacing, 
especially with respect to undocumented features and bugs that the device may have.  
Two well known manufacturers of these devices are Lauterbach and Microekintl.  

The power of logic analyzers and in circuit emulators have long been recognized by the 
reverse engineering community and also by the maintainers of license cracking web sites. 
[Acad] 

6.3 Cryptography 

People sometimes draw analogies between the security of cryptosystems and the security 
of obfuscated programs.  They both obscure an object through a keyed transform, 
however, their uses are very different and reverse engineering them is very different.  An 
obfuscated program must retain the functionality of the original program, so attacking 
obfuscation can be done through interaction with the program and noticing patterns by 
white-box inspection.  There is no interaction possible with an encrypted object; ideally it 
should be indistinguishable from random bits.  Theoretically, if a cipher is good, the only 
possible attack is a brute-force attack on the key.  Obfuscation transforms are not 
designed to be reversible, so finding the key yields almost nothing. 

6.3.1 Exploiting Error Conditions 
Real world cryptosystems can be less secure than their abstract models.  For example the 
different error conditions of a real implementation occasionally yield information about 
the key, for example attacks on RSA PKCS #1 v1.5 by Bleichenbacher [Ble98], PKCS #1 
v2.0 by Manger [Man01] and on Cipher Block Chaining modes by Vaudenay [Vau02].  
These kinds of attacks use error conditions generated by implementations of decryption 
functions (or in specifications of how to securely use a cryptosystem) to slowly learn 
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about the private keys used by the functions. In the published results new mathematical 
models of the cryptosystems are developed that can be used to determine the private keys 
by applying typically large amounts of data collected by probing the system. Such attacks 
roughly correspond to a reverse engineer learning about an obfuscated program by 
manipulating the programs input parameters, calling the function, and examining the 
return values.  

6.3.2 Power Analysis and Similar Attacks 
Real cryptographic systems can leak information through electromagnetic radiation 
[Tempest], power consumption [CJR+99, KJJ99], or the time required to perform 
operations [Koc96]. While these attacks are usually performed in an otherwise black box 
setting, some of these attacks determine events that may be observed during the reverse 
engineering of some obfuscated program. An example of this relationship is that simple 
power analysis exposes information about the execution path of the function.  Simple 
power analysis can expose: 

• Sub-key bits of a DES key from the DES key schedule behavior and from the 
behavior of DES permutations 

• Duration of string comparison operations, usefully for examining a secret bit by 
bit, and  

• Data used by modular multipliers and by modular exponentiation operations. 
[KJJ99]. 

Timing attacks also exploit data dependent variations in control flow of cryptographic 
functions [Koc96].  Tempest attacks can reveal internal state or data flows of a function, 
for example traffic on a data bus,7 which is not that different from a reverse engineer 
monitoring a data bus using a logic analyzer.   

6.3.3 Fault Analysis Attacks 
Other probing attacks against cryptosystems are the Differential Fault Analysis (DFA) 
attacks [BDL97, BS97, BMM00] including glitch attacks [AK96, AK97, SA02].  Such 
attacks involve interjecting faults into hardware or software that is performing a 
cryptographic function. These faults may attempt to manipulate crypto-variables, (e.g., 
transient register faults), or read bits of crypto-variables (e.g., detecting leakage currents), 
or alter the control flow of the function.  Some published DFA attacks, like the error 
condition attacks of Section 6.3.1, result in new mathematical models of the 
cryptosystems that can be used to determine the private keys by applying data collected 
by probing the system, while other fault analysis attacks are a direct (or indirect) reading 
of critical memory locations. 

Conventional models of cryptographic functions assume a protected space in which 
cryptographic functions are performed. The adversary can attack the system by passively 

                                                 
7 Sometimes the signals from a bus are so strong that an ordinary AM radio receiver can be used to detect 
them [KJJ99]. 
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monitoring physically insecure interfaces to these spaces and actively probing (i.e., 
sending data) only these interfaces.8 For this general model cryptographers seek to 
establish that the valid cryptographic functions only have to perform a feasible number of 
operations relative to a value (called a security parameter) while an adversary that can do 
anything allowed by the model has to perform an infeasible number of operations to 
break the system.  However, changing the model alters the adversary’s cost relative to the 
conventional security parameter or introduces an alternative new cost parameter, (e.g., 
rather than the cost of breaking the system being exponentially related to the size of a 
cryptographic key, the cost may be linearly related to the size of the memory used by the 
function). 

7 Our Conclusions 
The major issue at stake in this research is whether automated obfuscation tools can 
produce obfuscated code that is resistant enough to analysis so that deobfuscation always 
requires significant manual analysis (or manual guidance of deobfuscation tools).  If 
those techniques are sufficient to force a manual component to deobfuscation, they have 
provided a positive cost/benefit tradeoff between obfuscation and deobfuscation since the 
obfuscation techniques were automatically applied without human involvement, and are 
therefore relatively inexpensive.  This cost/benefit relationship could be highly useful for 
protecting code in environments where code could be frequently (re)obfuscated and run 
for limited periods of time, such as in mobile agent systems, and smart clients of security-
aware servers. However, our experiments and much of the related work we examined 
lean in the other direction; that is that automated obfuscation will not be useful for 
protecting long-term secrets. Additionally, our experiments show that the attacker has to 
perform less computational work than the obfuscator. 

It should be noted that security by obscurity (e.g. a secret obfuscation program) is not a 
solution as there are numerous ways the attackers could obtain the "secret" obfuscation 
algorithms, especially if the obfuscator is a commercial product. 
It should be noted that security by obscurity (e.g. a secret obfuscation program) is not a 
solution as there are numerous ways the attackers may obtain the “secret” obfuscation 
program, especially if the obfuscator is a commercial product. 

The SPMA scheme would work if (1) a lower bound on deobfuscation could be 
established, or  (2) the obscurity of the obfuscation technique could be relied upon. 
Alternative 1 is not possible for obfuscation algorithms that blindly obfuscate all 
programs -- but the Barak, et al. paper suggests that perhaps some restricted class of 
programs could be obfuscated -- in any event, this is a hard path forward. Alternative 2 is 
really security through obscurity, which is known to be fragile. But as long as a user is 
willing to replace an obfuscation method with a new one each time it is detected that it 
has been broken, and the user is willing to accept some intrusions/compromise of some 
agent sessions on occasion, then this scheme could still be used. 

                                                 
8 The classic notion of an insecure channel is a collection of the insecure interfaces. 
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Future arguments surrounding strength of obfuscation should attempt to incorporate the 
practical differences between idealized models of computation such as Turing machines 
and real finite space and time register machines such as Intel Pentiums. Again, we found 
that recursion theory leads to results not useful in practice, as it is primarily concerned 
with what is computable and what is not. In practice being able to compute something 
"most of the time" would be good enough for a deobfuscation process, especially when 
monitored by humans. 

7.1 Don’t Depend on Obfuscation for Security 

First and foremost, we conclude that (at this time) there is no reason at all to depend on 
obfuscation for security.  This is not to say that obfuscation should not be used, but high-
value secrets must not be entrusted to it.  For instance a game company might use 
obfuscation to prevent copyright infringement, but it would be very unwise for such a 
company to forecast its revenue assuming that the obfuscation will hold.  They must 
assume that it will not, and plan accordingly (The history of commercial software greatly 
favors that it will not). 

7.1.1 Argument From Theory 
We make this conclusion for several reasons.  The first reason is that we know of no 
theoretical result that suggests a deobfuscation problem is hard.  Although we trust 
cryptography and have no proof that a strong cryptographic algorithm exists, we can 
prove that one exists assuming one-way functions exist.  We have found nothing 
analogous to that result for obfuscation.  There are also results to the contrary, such as 
Barak. 

Of course some deobfuscation problems cannot be formalized at all, such as the secret 
algorithm use-case.  These situations are even worse, from a trust point of view.  Not 
only do we not have a lower bound, or a lower bound relative to a reasonable assumption, 
but we cannot hope to ever have one, because the problem: to “understand” the secret 
algorithm, cannot be defined in any formal way.  The success criteria for these types of 
problems are fundamentally human, and not mathematical; therefore, their difficulty 
cannot be analyzed.  You can never have assurance that tomorrow someone will not find 
a new way of looking at your code that allows him or her to “understand” how it works.  
Thus obfuscation for either formalizable or non-formalizable use cases must be regarded 
as “icing on the cake,” and not an essential component for security.  

7.1.2 Argument From History 
Our second reason for concluding that obfuscation cannot be trusted is the real-world 
history of obfuscation.  Software companies have been trying to use obfuscation (to 
prevent copyright infringement, to prevent competitors from creating a product that is 
compatible with theirs, to hide APIs, to hide algorithms) for years, and their schemes are 
broken routinely, and often very soon after release.  We know of no obfuscation that has 
been actually deployed and withstood serious attack.  This indicates that all of the 
techniques in current use are far from effective.  If in fact there were a use-case where 
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obfuscation can actually be secure, then that obfuscator would need truly new ideas.  
Therefore no incremental improvement in obfuscator technology is useful.  

7.2 Barak’s Result is Very Strong 

Our second conclusion regards purported proofs that obfuscators are secure.  Barak's 
paper clearly proves that a general obfuscator does not exist.  Therefore any claim that an 
obfuscator protects all the information not explicitly revealed by the program's behavior 
is false.  Any claim that an obfuscator works in any use-case is false. Any claim of “drop-
in” security, “just run it through our tool and it'll be secure” is false.  Any attempt to 
analyze the hardness of deobfuscation must identify the secret that is being protected, i.e. 
it must choose a particular use-case (or a proper subset of use-cases).  This provides a 
sort of litmus test for obfuscation-related snake oil: if someone makes general claims 
about obfuscation security, rather than about protecting a specific secret, then they are 
wrong.  Note that one-round obfuscated program execution (e.g. Cachin [CCK+00]) is 
not general program execution, and examining claims about such schemes will 
necessarily be different. 

Consequently we suggest that anyone seeking to write an obfuscator first lay out very 
clearly what secrets they wish to protect.  It may be (probably is) the case that different 
types of secrets require entirely different types of obfuscator to protect them (if they can 
be protected at all).   

7.3 Better Solutions Are Available 

Our third conclusion is that many of the use cases that people suggest have better 
solutions than obfuscation.   

One common use case is secure execution of mobile agents.  These use cases can be 
solved via cryptographic means.  Unfortunately the cost can be rather high except for 
small agents, but if it is not too high for what you want to do, then the cryptographic 
approach is clearly superior to obfuscation.   

Because obfuscation is rather difficult to implement, untrustworthy, and has a history of 
being broken, we suggest that obfuscation not even be considered until all other possible 
approaches have been ruled out.  It should be noted that there are several formulations of 
security problems that are impossible to solve, but by making slight modifications they 
become possible.  We suggest that people considering obfuscation ask themselves if the 
formulation of their problem is too restrictive and eliminates from consideration security 
mechanisms that are effective. For example, the “comparison-shopping mobile agent” use 
case is not solvable in the usual mobile agent set up, where the computation takes place 
totally offline.  However by adding a generic trusted third party it becomes possible. 
[CCK+00]  Another example: software-only trusted clients are impossible [Sch005], but 
by adding the assumption of tamper-resistant hardware it becomes possible to hinder 
attackers who cannot attack the hardware. 
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7.4 Applicability beyond Java 

We could devise analogues of many of our obfuscating transforms on Java programs for 
use on native languages similar to Java, such as C++. Assume that the native program 
obfuscator is implemented as a compiler back-end, or is a source-to-source obfuscator, so 
it can have easy access to structural information. Note that an ordinary C++ compiler 
performs some of our obfuscating transforms already, such as the replacement of class 
names with unique identifiers. Other control flow transforms, such as using table-
computed jumps in place of processor conditional jump instructions, can be implemented 
in the same way as our obfuscator as all processors should have a jump-to-address 
instructions. Our call stack mechanism is considerably less revealing than Java's 
mechanism, but is probably equivalent to a stripped executable call stack. The local 
variable transforms could be implemented similarly, as our DAG code representation is 
similar to (at least) the compiler's parser, and possibly its internal representation (for 
performing optimization and code generation from).  

7.5 Summary 

We introduced three unknowns about obfuscation. All three remain unknown, especially 
when restricted to certain use cases, or by having non-general program execution models. 
Our experiments showed that “simple” obfuscation techniques are not secure, and they 
create less work for the attacker than the defender. The findings on patterns show that the 
variability able to be produced by obfuscation tools similar to ours is very limited. 

The SPMA Project set out expecting obfuscation to be merely a software engineering 
problem.  It turned out to be something much more difficult, if not impossible.  None of 
the techniques we know of are sufficient to get any reasonable level of assurance that our 
secrets are secure. Furthermore, Barak’s result rules out general obfuscation, which is 
what we wanted to achieve.  If obfuscation is to succeed, it must concentrate on particular 
use cases, and it must contain fundamentally new ideas.  We have seen that obfuscation is 
more than an engineering problem, although it will be a difficult engineering problem as 
well: it is a mathematical problem. In order to come up with an effective obfuscator, 
researchers need some new insights that go beyond the techniques currently known. 
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Appendix A: JBET 
The Java Binary Enhancement Tool (JBET) is a general Java program analysis and 
manipulation tool. JBET uses a convenient internal representation of all the contents of 
Java binary (.class) files, for easy manipulation. For example, the code in each method is 
stored as a list of Instruction objects, which know about the operands of the Java 
instructions, how to emulate the instruction, etc. A directed acylic graph (DAG) 
representation of code is also available. Various manipulations are very easy to code, for 
example, a plugin that automatically turns field accesses into getter/setter method pairs is 
152 lines of source code.  

We tested the correctness of JBET by reading in and writing out thousands of Java 
binaries and ensuring that the generated files are identical, and by using JBET to 
transform itself and verifying that the program still ran. Our approach includes 
representation of the entire Java instruction set. JBET can insert new methods (or 
functions) into Java binary (.class) executable files, and also cause original program code 
to invoke our new functions; this ability allows us to augment the functionality of mobile 
agents (and Java programs in general) without requiring access to source code. This 
binary capability will significantly ease the technology transfer of our technology since 
the technology can be applied to fielded Java programs without having to first obtain 
their source code.  

Design 

Basic data structures  
The JBET core uses several classes to represent the contents of a Java class file in an 
easily manipulatable form. Many transformations on Java programs are easy to code 
using these data structures.  

ClassInfo 
The ClassInfo data structure represents a single Java class (essentially, the contents of 
one .class file). It stores data such as name, access flags, a list of MethodInfos for the 
methods, and a list of FieldInfos for the fields.  

MethodInfo 
MethodInfo represents a single Java method. It stores the name, descriptor, containing 
ClassInfo, the exception specification for the method, and a list of Instructions 
representing the code for the method (if any). An equivalent to the Java class verifier is 
included, so that assembled code can be checked for errors that would cause the JVM to 
reject the class to be detected during processing. In addition, our verifier outputs the exact 
instruction causing the problem.  
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Instruction 
Instruction objects represent one Java instruction, including opcode and operands. The 
Instruction class has a database of Java instructions, allowing it to be used in a “Java 
assembler” to ensure that all instructions have correct operands. The Instruction class also 
handles jump addresses internally, so programmers of JBET modules do not need to be 
concerned with aligning bytes and adjusting jump targets.  

Graph-based representation  
For nontrivial code transformations, a graph-based representation is desirable compared 
to a list of raw instructions. (We developed the graph-based representation while writing 
the obfuscator). In this representation, the code for a method is stored as a list of basic 
blocks, each containing graph nodes for Java operations. This frees the programmer from 
having to manage the Java operand stack while manipulating code. Because of the strict 
requirements on code layout enforced by the JVM, it is always possible to split a method 
into basic blocks. The programmer may use the graph-based and normal representations 
interchangeably, converting to one or the other depending on which is more desirable.  

The graph representation stores Java instructions in a high-level form (almost like parse 
trees of source code). For example, an invokevirtual node contains a list of nodes 
for the arguments, whereas in the instruction list, the arguments would have merely been 
pushed on the stack by earlier instructions.  

Plug-ins 
JBET is designed to allow separate code (or graph) modification transformations to be 
plugged in, and to make it reasonably easy to continue development of advanced 
transformation techniques into the future. (If the on-disk layout of class files is changed, 
we can include support for that in an updated version, without affecting “most” plug-ins.)  

The obfuscator and deobfuscator are two notable examples of plug-ins. 

Use in Survivable Server Project 

One use proposed for JBET technology is to rewrite parts of the Java standard library to 
include security checks that the Java security manager interface does not support (for 
example, access to files checked at every read). This use of JBET was part of the DARPA 
funded Survivable Server project, which applied multiple technologies to hardening a 
component of the Joint Battle Infosphere. This project, led by Teknowledge Corporation, 
began in July 2002 and ended in March 2003.  

We created a plug-in for JBET that operated on a Java program to intercept calls to native 
methods invoke policy enforcing code before each such method call. 

Packaging 

We developed a portable build environment for JBET. (Only tested on Linux and 
Windows NT/XP, but should work on other Unix platforms with Java) Our. environment 
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requires only a few free and easily downloaded tools to build and run our software on any 
of these platforms. 

To support Survivable Server and other projects, we organized JBET into separable 
packages, and removed all traces of obfuscation from the main core, which supports 
general analysis of Java class files. The obfuscation and deobfuscation operations are 
separately packaged and need not be shipped with the main JBET core.  

In discussions with the DARPA Program Manager, it became evident that our 
obfuscation software could be used by attackers as well as by defenders.  To prevent this, 
the Program Manager requested that we not distribute JBET as Open Source software or 
make it available except to the Government and NAI's trusted business partners.  While 
this will reduce visible transfer of SPMA technology, we believe it is a prudent decision 
and will not materially affect our ability to transfer the technology to national defense 
applications. With the reorganization of the software, we can distribute the JBET core 
while holding back the obfuscation tool, forestalling embarrassing malicious use of the 
obfuscation tool. 
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